Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Workflow example with Python processing and Python Connector agents

Workflow Configuration

The sections below provide descriptions of agent configurations for this example workflow.

WS_Handler

The Analysis agent is configured to handle requests from the web services agent. The request is translated into a format required by the machine learned model. Responses from the model are sent back to the web services agent as the result of the prediction.

...

Info
titleExample - Code for WS_Handler


Code Block
import ultra.Iris.UFL_Types;
import ultra.ws.Iris.PRF_WebService.Xtraining;

consume {
    debug(input);
    if (instanceOf(input, WSCycle_predict)) {
        WSCycle_predict cycle = (WSCycle_predict) input;
        PredictObservation obs = udrCreate(PredictObservation);
        obs.observation = listCreate(double, cycle.param.sepal_length, cycle.param.sepal_width, 
            cycle.param.petal_length, cycle.param.petal_width);
        obs.context = cycle;
        udrRoute(obs, "observation");
    }
    if (instanceOf(input, PredictObservation)) {
        PredictObservation obs = (PredictObservation) input;
        WSCycle_predict cycle = (WSCycle_predict) obs.context;
        Response response = udrCreate(Response);
        response.iris = obs.prediction;
        cycle.response = response;
        udrRoute(cycle, "response");
    }
}


Predict

The Python processing agent processes UDRs by defining a consume block, and uses the selected Interpreter profile that is used to configure the Python executables.

...

Info
titleExample - Code for Predict


Code Block
import pickle

model = None
targets = None

def consume(input):
    if isinstance(input, InstallModel):
        global model, targets
        model = pickle.loads(input.model)
        targets = input.targets
    elif isinstance(input, PredictObservation):
        if model:
            idx = model.predict([input.observation])[0]
            input.prediction = targets[idx]
        else:
            input.prediction = 'please install model'
        if input.testing:
            debug(input)
            udrRoute(input, 'test_prediction')
        else:
            udrRoute(input, 'prediction')



Python_Connector

The Python Connector agent is configured to bind on port 3810 from which the data will be received. The types accepted for routing are PredictObservation (Iris.UFL_Types) and InstallModel (Iris.UFL_Types) on route r_1.

...

Info
titleExample - Code for Python Connector API


Code Block
import pickle
from .UFL_Types import InstallModel
from .UFL_Types import PredictObservation

def install_model(model, targets):
    udr = InstallModel(
        model=pickle.dumps(model),
        targets=targets)
    udrRoute(udr)

def predict(observation):
    udr = PredictObservation(
        observation=observation,
        testing=True)
    udrRoute(udr)
    return udrConsume().prediction

__all__ = ['install_model', 'predict']


Exploration Tool

You start the workflow, open the exploration tool of your choice, and run your script.

Scroll ignore
scroll-viewportfalse
scroll-pdftrue
scroll-officefalse
scroll-chmtrue
scroll-docbooktrue
scroll-eclipsehelptrue
scroll-epubtrue
scroll-htmlfalse


Next: