

TM Forum 2012

IPDR Streaming Protocol

(IPDR/SP) Specification

TMF8000-IPDR-IIS-PS

TM Forum Approved Version 2.8

 May, 2012

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 2 of 75

Notice

This material, including documents, code and models, has been through review cycles;
however, due to the inherent complexity in the design and implementation of software and
systems, no liability is accepted for any errors or omissions or for consequences of any use
made of this material.

Under no circumstances will the TM Forum be liable for direct or indirect damages or any costs
or losses resulting from the use of this specification. The risk of designing and implementing
products in accordance with this specification is borne solely by the user of this specification.

This material bears the copyright of TM Forum and its use by members and non-members of
TM Forum is governed by all of the terms and conditions of the Intellectual Property Rights
Policy of the TM Forum (http://www.tmforum.org/Bylaws/1094/home.html) and may involve a
claim of patent rights by one or more TM Forum members or by non-members of TM Forum.

Direct inquiries to the TM Forum office:

240 Headquarters Plaza,
East Tower – 10th Floor,
Morristown, NJ 07960 USA

Tel No. +1 973 944 5100

Fax No. +1 973 944 5110

TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/Bylaws/1094/home.html
http://www.tmforum.org/

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 3 of 75

Table of Contents

Notice ...2

Table of Contents ..3

List of Figures ..5

List of Tables ..5

Executive Summary ..6

1. Introduction ..7
1.1. Document Structure ...7

1.1.1. Introduction ...7
1.1.2. Issues and Appendices ...8
1.1.3. Problem Statement ..8

1.2. Terminology & Notation used within this document ...8

2. Protocol Overview ...9
2.1. Architecture ..9
2.2. Configuration ... 11

2.2.1. Exporter configuration ... 11
2.2.2. Collector configuration .. 11

2.3. Data Type .. 11
2.3.1. Elementary Types ... 11
2.3.2. User Defined Types .. 12

2.4. Data Representation ... 13
2.5. Documents .. 13
2.6. Templates .. 13

2.6.1. Template Representation ... 14
2.6.2. Template Transmission and Negotiation ... 14
2.6.3. Changing Templates... 15

2.7. Connection Establishment .. 16
2.8. Exporter Query Messages .. 16
2.9. Flow Control .. 17
2.10. Data Transfer .. 17

2.10.1. Data Messages ... 17
2.10.2. Request and Response Messages ... 18

2.11. Sessions .. 18
2.11.1. Multiplexed Streams within the same single Session ... 19
2.11.2. Simultaneous multiple Sessions within a single connection ... 19
2.11.3. Session Types... 19

2.12. Reliability ... 20
2.12.1. Data acknowledgment .. 21
2.12.2. Collector high availability .. 21

2.13. Protocol Summary .. 22
2.13.1. IPDR/SP version discovery .. 26
2.13.2. Protocol Sequence ... 26

2.14. Backwards Compatibility .. 28

3. Message Format ... 29
3.1. XDR equivalence to “ASCII art” ... 29
3.2. Common Header .. 30

4. Message Details .. 32

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 4 of 75

4.1. Connection .. 33
4.1.1. CONNECT .. 33
4.1.2. CONNECT RESPONSE .. 34
4.1.3. DISCONNECT .. 35

4.2. Errors ... 36
4.2.1. ERROR.. 36

4.3. Flow Control .. 37
4.3.1. FLOW START ... 37
4.3.2. SESSION START ... 38
4.3.3. FLOW STOP ... 39
4.3.4. SESSION STOP ... 39

4.4. Template .. 40
4.4.1. TEMPLATE DATE .. 40
4.4.2. MODIFY TEMPLATE ... 42
4.4.3. MODIFY TEMPLATE RESPONSE ... 43
4.4.4. FINAL TEMPLATE DATA ACK ... 44
4.4.5. START NEGOTIATION .. 45
4.4.6. START NEGOTIATION REJECT .. 45

4.5. Data ... 46
4.5.1. DATA ... 46
4.5.2. DATA ACKNOWLEDGE .. 47

4.6. Request/Response ... 48
4.6.1. Request ... 48
4.6.2. Response .. 49

4.7. State Independent ... 50
4.7.1. GET SESSIONS ... 51
4.7.2. GET SESSIONS RESPONSE ... 51
4.7.3. GET TEMPLATE .. 53
4.7.4. GET TEMPLATE RESPONSE .. 53
4.7.5. KEEP ALIVE ... 55

5. Underlying Transport ... 56

6. Service Discovery ... 57
6.1. UDP Protocol... 57
6.2. Capability Files .. 58

7. Security... 60

8. Complete IPDR/SP IDL Definition... 61

9. Appendix A: Terms and Abbreviations Used within this Document .. 68
9.1. Terminology ... 68
9.2. Abbreviations and Acronyms ... 69

10. References ... 71
10.1. References .. 71
10.2. IPR Releases and Patent Disclosures... 72

11. Administrative Appendix ... 73
11.1. Document History ... 73

11.1.1. Version History .. 73
11.1.2. Release History ... 74

11.2. Company Contact Details... 75
11.3. Acknowledgments... 75

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 5 of 75

List of Figures

Figure 1: The IPDR protocol stack 9

Figure 2: IPDR/SP State Diagram 1 23

Figure 3: IPDR/SP State Diagram 2 24

Figure 4: IPDR/SP protocol sequence diagram 25

Figure 5: Example of mapping from an XDR style specification to its equivalent ASCII art model
 30

Figure 6: The array of capability bits 33

List of Tables

Table 1: IPDR/SP Messages 32

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 6 of 75

Executive Summary

This document specifies the IPDR Streaming Protocol and includes
procedures, encodings, and message sets to accomplish this objective.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 7 of 75

1. Introduction

1.1. Document Structure

1.1.1. Introduction

Service Elements are often required to export usage information to mediation and
business support systems (BSS) to facilitate accounting. Though there are several
existing mechanisms for usage information export, they are becoming inadequate to
support the evolving business requirements from service providers.

For example, some of the export mechanisms are legacies of the Telco world.
Typically usage information is stored in Service Elements as log files (e.g., CDR files),
and exported to external systems in batches. These are reliable methods; however,
they do not meet the real-time and high performance requirements of today's rapidly
evolving data networks.

RADIUS [RADIUS] is a widely deployed protocol that may be used for exporting
usage information. However, it can only handle a few outstanding requests and has
extensibility challenges due to its limited command and attribute address space and
complexity of its Vendor Specific Attributes (VSAs). A detailed analysis of limitations
of RADIUS can be found in [DiameterBase].

DIAMETER [DiameterBase] is a relatively new Authentication, Authorization, and
Accounting (AAA) protocol that retains the basic RADIUS model, and eliminates
several drawbacks in RADIUS. The current DIAMETER protocol and its extensions
focus on Internet and wireless network access, and their support of accounting is
closely associated with authentication/authorization events. DIAMETER is intended to
solve many problems in the AAA area; by doing so, it does not adequately address
some critical issues such as efficiency and performance in an accounting protocol.

There are also SNMP based mechanisms that generally require a large amount of
processing and bandwidth resources.

Based on more detailed analysis along the lines mentioned above, the need for a
reliable, fast, efficient and flexible accounting protocol exists. The IPDR Streaming
Protocol is designed to address these critical requirements.

This document defines the Streaming Protocol that enables efficient and reliable
delivery of any data, mainly Data Records from Service Elements to any systems,
such as mediation systems and BSS/OSS. The protocol is developed to address the
critical needs for exporting high volume of Data Records from the Service Element
with efficient use of network, storage, and processing resources.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 8 of 75

This document specifies the architecture of the protocol and the message format,
which MUST be supported by all Streaming Protocol implementations.

1.1.2. Issues and Appendices

Appendix A Terminology, Acronyms and Abbreviations

Appendix B References

Administrative Appendix provides document revision history,
acknowledgements for work completed and
information about the TM Forum.

1.1.3. Problem Statement

The main issue addressed by this specification is the standardization of a billing-
grade protocol to replace the variety of protocols currently used to export usage data
from network and Service Elements. Target applications for this Streaming Protocol
would be Service Elements such as:

- Soft switches/VoIP Gateways
- Web/Proxy servers
- Application servers
- Firewalls
- Content Delivery Networks (CDN)
- Streaming media servers
- Game servers
- Passive/active Probes
- Edge access devices (routers, CSU/DSU, CMs, etc).
- Location-based wireless services

1.2. Terminology & Notation used
within this document

In this document, the keywords "MUST", "MUST NOT", "SHOULD", "SHOULD NOT",
and "MAY" are to be interpreted as described in [BCP14]. These keywords are not
case sensitive in this document.

This document will use initial cap spelling for all keywords which are referenced. For
instance the phrase Streaming Protocol is capitalized, to indicate that a concise
definition of the meaning of this term is available in the terminology section.

The document will also utilize eXternal Data Representation (XDR)-based [XDR]
Interactive Data Language (IDL) annotation when describing the structure of protocol
messages.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 9 of 75

2. Protocol Overview

2.1. Architecture

The IPDR/SP is an application running over a reliable transport layer protocol

Figure 1: The IPDR protocol stack

The transport layer protocol is responsible for delivering IPDR/SP Messages between
Exporters and Collectors. The transport layer MUST support the following
capabilities:

1. Reliable, in-sequence message delivery.
2. Connection oriented.

The transport layer may support:
1. Authentication.
2. Bundling of multiple messages into a single datagram.

Possible transport layer protocols may be TCP or SCTP [SCTP]. TCP supports the
minimal requirements for IPDR/SP, but lacks some desirable capabilities that are
available in SCTP, these include:
1. Session level authentication.
2. Message based data delivery (as opposed to stream based).

IPDR/Streaming

User

Exporter

Transport Layer

Lower Layers

IPDR/Streaming

User

Collector

Transport Layer

Lower Layers

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 10 of 75

3. Fast connection failure detection.

Another possible candidate transport protocol is BEEP (RFC3080) [BEEP]. BEEP
sits between low-level transport protocols such as TCP or SCTP and higher-level
application protocols such as HTTP.

Reliable delivery of Data Records is achieved through both the transport layer level
and the IPDR/SP level. The transport layer acknowledgements are used to ensure
reliable delivery of data packets and detection of lost Exporters, the IPDR/SP
acknowledges IPDR/SP Messages after they have been processed and the
accounting information has been placed in persistent storage.

Traffic flowing from an Exporter to a Collector is mostly Data Records (embedded in
Information Messages). There are Data Messages that can be transmitted from an
Exporter to a Collector and Request/Response Messages that can be transmitted
from an Exporter to a Collector and vice versa. There are also bi-directional control
message exchanges, though they only comprise a small portion of the traffic.
The IPDR/SP supports three types of Information Messages:
1. Data Message – a message that is initiated by the Exporter and contains

information gathered by the Service Element for various purposes, e.g.,
accounting.

2. Request Message – a message that CAN be initiated either by the Collection
System or by the Exporter as request to the counter party (Exporter or Collection
System respectively). It MIGHT be followed by a Response message from the
counter party. The interpretation of the request is out of the scope of this
specification.

3. Response Message – a message that CAN be sent as a Response to specific
Request (either by the Exporter or the Collection System). The interpretation of
the response is out of the scope of this specification.

Each and every Information Message is a wrapper of Data Record.

Streams of Data Records from a given Exporter have a large amount of internal
consistency. That is, the accounting events all represent instances of a small set of
accounting record types. IPDR/SP, like the IPDR/XDR [IPDR/XDR Encoding Format]
encoding format utilizes the concept of Templates in order to eliminate the
transmission of redundant information such as Field Identifiers and typing information
on a per accounting record basis.

IPDR/SP also incorporates IPDR/Service Definitions, based on XML-Schema, by
reference. IPDR/Service Definitions describe in detail the properties of the various
accounting records and their Fields. IPDR/SP Templates, like IPDR/XDR Templates
identify the Uniform Resource Identifiers (URI) of the schema which describes a given
accounting record structure and identifies each Field using its qualified name, as
defined in the referenced XML-Schema or in subordinate imported schemas.

An IPDR/SP Exporter may be associated with multiple Collectors. For any given
stream of accounting records (termed a “Session”), a single active Collector will be
targeted with those Data Records. However, in the event of a detected failure, if an

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 11 of 75

alternate Collector is available, that stream will be redirected to the alternate
Collector.
If an IPDR/SP Exporter is managing multiple Sessions these may designate different
Collectors as their primary consumer.
A Session may exist between an Exporter and one or more Collectors. A Collector
Priority is assigned to each Collector per Session. The Collector Priority reflects the
Exporter’s preference regarding which Collector should receive Data Records (and
optionally negotiate with, on the Template data set). The assignment of the Collector
Priority should consider factors such as geographical distance, communication cost,
and Collector loading, etc. It is also possible for several Collectors to have the same
priority. In this case, the Exporter could randomly choose one of them as the primary
Collector to:
1. (Optionally) perform Template data negotiation.
2. Deliver Data Records.

2.2. Configuration

The means by which an Exporter and a Collector are configured are not defined
within the scope of this specification. The configuration includes the connection
initiation policy (whether the Collector or the Exporter can initiate the connection).

2.2.1. Exporter configuration

The Exporter is responsible for configuring network addresses of all Collectors
belonging to a Session as well as the Collector Priority for the Session (It is possible
for several Collectors to have the same priority).

2.2.2. Collector configuration

The Collector is responsible for configuring network addresses of all the Exporters it
expects to open connection with.

2.3. Data Type

IPDR/SP supports built-in Elementary Types and optionally also User Defined Types.
The support of User Defined Types is a feature that is negotiated between the
IPDR/SP Exporter and the IPDR/SP collector.

2.3.1. Elementary Types

Elementary types are the built-in, basic building blocks of IPDR, and include types like
“Boolean” and “int”. An Elementary type will generally be used to describe a single
aspect of something.
An IPDR Elementary Type can be Basic Type or Derived Type, a Type that is derived
from a certain Basic Type. However the basic encoding rules do not differentiate
between the Derived Type and the Basic Types it was derived from. Elementary

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 12 of 75

Types are encoded in an identical manner as specified for XDR encoding when
packaging IPDR Docs in files. See the IPDR/XDR Encoding Format specification
[IPDR/XDR Encoding Format] for definitions of Types.
The scope of an Elementary Type is global, e.g., across sessions of a certain
connection (rather than within a specific session only).

2.3.2. User Defined Types

In contrast to Elementary Types that are built-in IPDR, IPDR allows users to define
their own proprietary Types through the following User-Defined Types mechanism.
User Defined Type may consist of a combination of one or more Types, which can be
used together as a single unit. This enables the definition of Compound Types such
as a structure, an array, an array of structures or an array of array.
Users define the hierarchy for the User Defined Types. Nesting is possible, as long
as:
- The definitions of the components of the User Defined Type precede the

definition of this User Defined Type (which is based on them).
- There is no cycle definition, e.g., the definition of User Defined Type is not based

on its own User Defined Type.
The scope of the User Defined Types is the IPDR session and thus User Defined
Type IDs can be reused in different sessions to represent (possibly) different User
Defined Data Types.

An IPDR Compound Type is either Array Type or Structured Type:
- A Structured Type defines a collection of one or more attributes (where the

attributes can be of Elementary Types or Compound Types) within a single
record.

- An Array Type defines a one-dimensional consecutive repetition of an attribute of
a certain Type (either Elementary Type or Compound Types) within a single
IPDR record.

The primary purpose of Compound data types is to define containers for other kinds
of data (including other compound objects).
Compound Types can be nested, i.e. members of Compound Type can be some
other Compound Type.
Common scenarios where Compound Types may be utilized are conference calls or
other multiparty services where the usage accounting may group all parties in a
single record. Note that typical Relational Databases require data in first normal form,
so there are benefits to observing this model. However, the need to represent existing
industry standard structures and still carry them in IPDR has driven the support for
Compound Types.
IPDR/SP supports capability negotiation (see section 4.1.1 below). Support for User
Defined Types shall be a negotiable feature. It may exist or be absent from a
compliant implementation. A Collector and an Exporter MUST be able to
communicate with a party that is different than its own capabilities. For example, a
Collector that supports User Defined Types should be able to interoperate with both
an Exporter that does and doesn’t support User Defined Types. It can determine
which type of Exporter it is connected to through the capability negotiation that
precedes the potential definition of User Defined Types.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 13 of 75

2.4. Data Representation

All data MUST use an encoding of big-endian. IDL shall be used to describe data and
message formats as well as the use of XDR with the exception of No 32-bit alignment
padding.

2.5. Documents

The IPDR/SP allows indicating logical boundaries of Data Records. A logical range of
Data Records is called a Document. When a Session is initially established from an
Exporter to a Collector, a unique Document Id is assigned by the Exporter in the
SESSION START Message.

An Exporter can indicate logical boundaries in the stream (e.g. indicating a new
logical document of records), by closing and then reestablishing a Session with the
Collector using a new unique Document Id.

The sequence numbering of the Data Records SHOULD begin at 0 each time a new
Document ID is assigned to a Session.

2.6. Templates

The IPDR/SP enables efficient delivery of Data Records. This is achieved by
negotiating a set of Templates for a Session before actual Data Records are
delivered. A Template defines the structure of Information Message payload by
describing the data Type, meaning, and location of the Fields in the payload. By
agreeing on Templates, Collectors and Exporters understand how to process
Information Messages received from the other party (an Exporter or a Collector). As a
result, an Exporter (or a Collector) only needs to deliver actual data attributes (Fields)
without attaching any descriptors of the data; this reduces the volume of information
sent over communication links.

A Template is an ordered list of Field Identifiers. A Field Identifier is the specification
of a Field in the Template. It specifies an accounting item that a Service Element
MAY collect and export. Each Field specifies the Type of the Field.

A Template references an IPDR Service Definition [IPDR-Service-Spec-Guide]
document, where a more complete definition of the Template is included.

The Template is optionally negotiated upon Session initiation between the Exporter
and the Collector. This allows the Exporter to avoid sending Fields that the Collector
is not interested in.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 14 of 75

The IPDR/SP supports usage of several Templates concurrently (for different types of
records). Fields contained in a Template could be enabled or disabled. An enabled
Field implies that the outgoing Data Record will contain the data item specified by the
key. A disabled Field implies that the outgoing record will omit the specified data item.
The enabling/disabling mechanism further reduces bandwidth requirement; it could
also reduce processing in Service Elements, as only needed data items are
produced.

In an IPDR/SP Session, all the Collectors and the Exporter MUST use the same
Template Set Configuration. The Templates' configuration and connectivity to an end
application MUST be the same in all Collectors. The Exporter MUST publish the
relevant Templates to all Collectors in a Session, before it starts to send data
according to the Templates.

The complete sets of Templates per each Exporter Session MUST bear a
Configuration ID that identifies the Template Set Configuration. Each Data Record is
delivered with the Template ID and the Configuration ID, so that the correct Template
can be referenced. A Collector, when receiving a record with an older Configuration
ID, may handle the record gracefully by keeping some Template history. The
transport layer SHOULD ensure that a Collector would not get Messages with future
Configuration IDs. The Configuration ID is not guaranteed to maintain the same value
between different Sessions unless externally declared otherwise by the Exporter.
However, for specific session, the Configuration ID is guaranteed to maintain the
same value between different connections unless externally declared otherwise by
the Exporter.

2.6.1. Template Representation

Templates reference IPDR Service Definition as a formal, externally defined
specification of the Template structure. Section 4.4 below describes the IDL fragment
that defines the formal specification of the "Template Block" and "Field Descriptor"
used to describe the structure of a single Template.

2.6.2. Template Transmission and Negotiation

In the simplest form, the Exporter declares the Templates it employs and
communicates this information to one or more Collectors. Optionally, Templates may
be negotiated. The negotiation is an advanced and advantageous feature compared
to most of the alternative protocols for usage exchange. This allows the Collector and
Exporter to negotiate a set of Fields within Templates to be sent. Rather than
requiring the Exporter to export all Fields, whether the Collector is interested in
receiving them or not, this allows the Collector(s) to indicate to the Exporter which
Fields they are interested in and this allows the Exporter to determine whether or not
to support the requirements of the Collector. Obviously it is not allowed to add new
Fields to a template during template negotiation.

Ultimately, the Exporter determines which Fields to send. A simple Exporter MAY
indicate that Template negotiation is not a supported capability. Another Exporter
MAY support negotiation, but may based on local configuration chose to send Fields
in the initial proposed Template even if the Collector did not indicate an interest.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 15 of 75

IPDR/SP has a feature of capability negotiation. The capability to negotiate
Templates is a capability that may exist or be absent from a compliant
implementation. A Collector and an Exporter MUST be able to communicate with a
party that is different than its own capabilities. For example, a Collector that supports
Template negotiation should be able to interoperate with both an Exporter that does
and doesn’t support Template negotiation. It can determine which type of Exporter it
is connected to through the capability negotiation that precedes the potential
Template negotiation.

Templates are negotiable between an Exporter and a Collector. A Collector MAY
propose changes to the Templates received from an Exporter (e.g., enabling some
keys and disabling others), or it can acknowledge the Templates as is. In the case
that a Template or a Field is not recognized by the Collector (e.g., they might be
added to the Exporter after the Collector configuration has completed), the Collector
MAY choose to disable each unknown Field or unknown Templates in order to avoid
unnecessary traffic.

A Template is disabled when all the keys are disabled. It is the Exporter’s
responsibility to decide what would be the final set of Templates used by a Session.

The Collector MUST not disable Fields in the Template if they are mandatory based
on the IPDR Service Definition unless the Collector is disabling all the Fields in a
Template to effectively disable transmission of that Data Record type.

Templates are negotiated only with the highest priority Collector within a Session.

2.6.3. Changing Templates

Changing Templates includes changing the Field enable/disable setting of existing
Template/s and/or introduction of (a) new Template/s.

Over time the set of information available from an Exporter may change. In this case
it may be desirable for the Exporter to modify any existing Sessions in order to begin
transmitting Data Records which incorporate these changes. IPDR/SP offers a
mechanism to accomplish this change.

End the current Session by sending a SESSION STOP Message. The new set of
Templates may then be announced and a negotiation on this set of Templates may
occur. Subsequently a new SESSION START Message is issued indicating the
resuming of the Session. The Exporter (in case the set of Templates did change)
MUST change the Configuration ID and indicates a boundary in the Data Record
stream by specifying a new Document ID in the SESSION START Message and
reset the sequence number to 0.

In the case of multiple Collectors available for the same Session, the Exporter
SHOULD inform the Collectors with lower Priority of the change.

This specification does not define the means by which an Exporter is configured to
utilize a new set of Templates. Over time a Collector may require different set of
Fields e.g., it requires reception of more/less data for certain purposes, or it can

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 16 of 75

handle data that previously was meaningless. In this case the Collector requests a
Template negotiation. The Exporter MAY either accept or reject this request.

2.7. Connection Establishment

The IPDR/SP state machine allows for connections to be established by either the
Exporter or the Collector. An implementation of an Exporter may choose to only
enable connection establishment in one direction.

The Exporter may only initiate connections and not accept inbound connections, or it
may only accept inbound connections and not attempt to create connections itself.

To ensure interoperability a Collector SHOULD support both directions of connection
establishment.

It may prove useful in some deployments to choose a model for connection
establishment that is effectively unidirectional; e.g., all Collectors establish
connections or accept connections. For instance security policies or device
constraints may dictate a unidirectional approach.

In general, support for both directions of connection may reduce the delay in
reestablishing communication when either a Collector or an Exporter is restarting.
Initiating a connection upon startup provides the quickest means to identify that an
Exporter or Collector is available. Alternatively polling strategies may be employed,
where connection reestablishment attempts are made during some configurable
interval. Means of configuring such intervals are outside the scope of this document.

2.8. Exporter Query Messages

A Collector MAY query an Exporter’s status by sending query Messages after it has
established a connection with the Exporter. The Exporter MUST respond with
response Messages. Only the Collector can initiate the query Messages.

Two query Messages are defined:

- GET SESSIONS – returns information about all the Sessions that are available
from this Exporter.

- GET TEMPLATES – returns information about the Templates used on a
particular Session.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 17 of 75

2.9. Flow Control

Flow control mechanisms are employed to ensure that data is sent from an Exporter
to a Collector only if it is ready to receive data. Flow control mechanisms are likewise
used to indicate to the Collector whether an Exporter is sending to it data as the
primary Collector or it is a redundant/backup Collector for some other Collector that is
currently primary. The Flow control also provides information on the DSNs and
Document ID so that the Collectors can collectively guarantee that no Data Records
are lost.

Four Messages (FLOW START, FLOW STOP, SESSION START and SESSION
STOP) are employed to support flow control. FLOW START and FLOW STOP are
sent by the Collector to indicate whether it is ready or not ready to receive data, in the
case of FLOW STOP it provides information to the Exporter about why the Collector
is no longer willing to receive Data Records (see the 4.3.1 FLOW START section and
the 4.3.3 FLOW STOP section)

SESSION START and SESSION STOP Messages are sent by the Exporter to
designate the associated Collector the active/inactive data transfer and to provide
information static within the Session. (See the 4.3.2 SESSION START section and
the 4.3.4 SESSION STOP section)

In addition to explicit flow control Messages mentioned above, KEEP ALIVE
Messages can be periodically sent between either communicating parties to the other
to ensure the connection is still available (see the 2.12 Reliability section).

2.10. Data Transfer

After Templates have been negotiated or set (if negotiation is not supported), and
both Session and Flow have been started, the Exporter and the active Collector
(which is usually the highest priority Collector) get into Active Session state.
Whenever Collector and Exporter are in Active Session state, Information Messages
CAN be sent. Following are descriptions of the three types of Information Messages.

2.10.1. Data Messages

DATA Messages are sent from the Exporter to the active Collector. Each DATA
Message contains a Data Sequence Number (DSN). The primary Collector MUST
accept the data as long as it is in sequence. Out-of-sequence DATA Messages
SHOULD be discarded. Upon reception of the Message with initial DSN (designated
in the SESSION START Message), the Collector MUST accept all in-sequence
DATA Messages. The DSN MUST be incremented by 1 for each new DATA
Message originated from the Exporter. A Collector MUST acknowledge the reception
and correct processing of DATA Messages by intermittently sending DATA
ACKNOWLEDGE Messages when the window of outstanding Data Records is
closing or acknowledgement timers fire. The DATA ACKNOWLEDGE MUST contain

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 18 of 75

the DSN of the last processed in-sequence DATA Message. See section 2.12
Reliability for more information Request and Response Messages.

2.10.2. Request and Response Messages

REQUEST Message CAN be initiated either by the Collector or by the Exporter.
Depending on the specific application a given request message may require a
corresponding response message from the counter party (Exporter or Collector). If
response message is required, a proper flag MUST be set at the request message.

RESPONSE Message MUST be sent if and only if, REQUEST Message with a
response required flag set, is received.

Each REQUEST Message contains a request number field (a unique ID in the
context of the specific IPDR document) that serves as a correlation reference
between the REQUEST Message and the RESPONSE Message.

Both the REQUEST and the RESPONSE Messages should be only sent during an
ACTIVE SESSION state.

In case the request initiator is the IPDR/SP Exporter and a response is expected, and
the Exporter does not get a proper response in time, the Exporter CAN consider this
as an indication/trigger for starting a failover to an alternative collector.

Please note that the value of this timeout is application dependent and is out of the
scope of this spec.

In case the Active Session was stopped prior to the time a response message was
sent or received: the receiver of the request message WILL NOT send (or resend) a
response message and the requester of this request message WILL consider this
situation as an indication of an unsuccessful request (as if no response has been
received on time). The requester CAN resend the same request as soon as relevant
session is initiated (and an active session state is reached). In this case the duplicate
bit MUST be set.

2.11. Sessions

It is sometimes desirable to support multiple different sets of Templates for different
applications. For instance, one set of Templates may relate to Accounting/Billing data
as well as associated Audit information while another set of Templates may be used
for Fraud application or Traffic Engineering.

Sessions define the set of Templates supported by an Exporter. The basic Exporter
supports at least one Session that defines the set of Templates it exports. Each
Session has its set of Templates (these may be the same Templates, but the Fields
could be enabled or disabled differently). The available Sessions are configured in the
Exporter, each with a different Session name with associated Session IDs. The
means of this configuration is outside the scope of this specification.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 19 of 75

Once a Collector’s relationship with an Exporter is in the connected state, the
Collector indicates its willingness to participate in Sessions by issuing a FLOW
START Message for each target Session. An Exporter indicates the status of a given
Session with a Collector via the SESSION START and SESSION STOP Messages.

A Collector MAY take part in different Sessions. When configuring a Collector, it
needs to know the Sessions in which it participates. The Exporter can issue a
GetSession Message to receive a list of available Sessions provided by an Exporter.
The configuration of Sessions that a Collector MAY participate is outside the scope of
this specification.

Whether within a single Session or within multiple Sessions, information related to
multiple Templates is also multiplexed over the same connection.

2.11.1. Multiplexed Streams within the same single Session

In order to associate each DATA, REQUEST or RESPONSE Message to the
appropriate Template, each DATA, REQUEST or RESPONSE Message indicates in
its header the Template ID to which it relates (see the DATA, 4.6.1 REQUEST and
4.6.2 RESPONS sections).

2.11.2. Simultaneous multiple Sessions within a single connection

IPDR/SP supports the ability to have multiple Sessions for communication of different
types of accounting records to different Collectors. For example, performance related
information to one Collector and billing-related information to another. At times, the
same Collector MAY serve as the Collector for multiple types of information.
Therefore, the ability to have multiple Sessions on the same link is desirable.

The capability to support multiple Sessions is a capability that may be optionally
supported and is negotiated as part of the capabilities negotiation stage of the
protocol. The ability to support multiple Sessions is indicated by setting the
MULTISESSION bit in the capabilities bit-mask set within the CONNECT Message. If
both communicating parties support MULTISESSION then multiple Sessions MAY
exist. An Exporter MAY indicate support for MULTISESSION but still export only one
Session.

An Exporter MAY deliver Data Records to different Collection Systems by
establishing different Sessions. Each Session MAY consist of several Collectors in a
redundant configuration. The Session ID embedded in all the IPDR/SP Messages
determines which Session a given IPDR/SP Message is associated with.

The protocol message header indicates which Session that Message relates to, to
support the multiplexing of multiple Sessions over the same connection (See the 3.2
Common Header section)

2.11.3. Session Types

IPDR/SP provides for open-ended streaming of data records as they are created, or as an

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 20 of 75

option, logical boundaries may also be placed between groups of data records as well. A

logical range of data records is called a document. An IPDR document is defined as a

series of records that were generated during the interval an IPDR session lasted or during

a time interval called collection interval. Each IPDR Service Definition can include its

own requirements in terms of how IPDR documents are generated using the follow

Session Types

Time Interval Session: The exporter follows a schedule based session to stream data on

a periodic time interval. The collector creates the IPDRDoc within those demarcation

points. Note that the Time Interval Session is managed by the exporter as being delimited

by session start/stop messages. A collector initiated flow operation is possible as well; the

collector issues Flow Stop messages to stop the exporter streaming. Finally, it is possible

to control the Time Interval Session at either end-points. A Time Interval Session may

close immediately after the exporter streams the records or remain open until the end of

the time interval in which case, the exporter stops the session and starts a new session for

the next time interval.

Event Based Session: It is an open-ended session. During the time the IPDR session is

open the exporter can stream records at any time, thus the name "Event Based Session".

Time Based Event Session: Consists of an Event Based session open at any time

allowing events to be streamed to the collector with the session closed periodically based

upon time for synchronization with other sessions or for session processing integrity.

Ad-hoc Session: Per request (from a Collector), the Exporter creates a session and closes

it when either the data is streamed or a closing command is generated. \.

The protocol message header indicates which Session that Message relates to, to
support the multiplexing of multiple Sessions over the same connection (See the 3.2
Common Header section)

2.12. Reliability

Two primary means are employed to reduce the likelihood of data loss:

- Data Records are acknowledged by Collectors when received.

- Redundant Collectors can be connected to an Exporter.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 21 of 75

2.12.1. Data acknowledgment

The Exporter is responsible for delivering all the records. A Collector MUST
acknowledge the reception and correct processing of DATA Messages by
intermittently sending DATA ACKNOWLEDGE Messages when the window of
outstanding Data Records is closing or acknowledgement timers fire. The DATA
ACKNOWLEDGE MUST contain the DSN of the last processed in-sequence DATA
Message. The Collector SHOULD make every attempt to make the data recoverable
upon Collector failure before acknowledging Data Records. As an example, a
Collector MAY write the records received to a redundant persistent storage array,
flush and sync the disk to assure survivability in case of Collector failure. This
provides a rather high degree of confidence that the data can be recovered. The
indication of acknowledgement from a Collector can be assumed by the Exporter to
mean that it no longer has responsibility for these Data Records and MAY remove
them from its transient buffer.

2.12.2. Collector high availability

Collector redundancy: For purposes of improved reliability and robustness,
redundant Collectors configuration may be employed. Deployment of redundant
Collectors is a deployment choice by the operator which will be based on the
business impact of lost Data Records. Additional features such as load balancing
may be implemented in a multi-Collector environment. The process of configuring
Exporter is carried out using the NE's configuration system and is outside the scope
of this document.

KEEP ALIVE Messages are sent periodically between either communicating parties
to the other to ensure the connection is still available. These KEEP ALIVE Messages
are sent on both primary connections and standby/backup connections to ensure that
backup links are also operational in case of a failover due to failure of link or
active/primary Collector.

Transport layer detection: The transport layer (together with some other means) is
responsible for monitoring Collector's responsiveness and notifying protocol for any
failures. The Exporter MAY choose to transition to an alternate Collector.

Unacknowledged data: When the amount of unacknowledged Data Records
reaches a threshold or the time since the last DATA ACKNOWLEDGE Message
exceeds that set during the Session initiation, all unacknowledged Data Records
SHOULD be transmitted to an alternate Collector. The duplication flag of this/these
DATA Message/s SHOULD be set to indicate possible duplication. If alternate
Collectors are not available; the Exporter MAY in response to system limitations
choose to drop some accounting records. This loss would be indicated by a gap in
sequence numbers

Failover: An Exporter SHOULD deliver Data Records to its perceived operating
Collector with the highest priority; if this Collector is deemed unreachable, the
Exporter MUST deliver the Data Records to the next highest priority Collector that is
perceived to be operating. In this scenario one Collector does not receive all the
records but another redundant Collector for the same Collection System receives the

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 22 of 75

rest of the records. For example, Collector #1 could receive records 3042-3095 and
then 3123-..., with Collector #2 receiving records 3096-3122. It is the Exporter’s
responsibility to deliver all the records, in-sequence, but not necessarily to the same
Collector.

The protocol does not specify how an Exporter SHOULD redirect Data Records to
other Collectors, which is considered an implementation issue. But all the supporting
mechanisms are provided by the protocol to work in a multiple-Collector environment
(e.g., the Template negotiation process, and configuration procedures, etc.). Data
Record delivery SHOULD revert to the higher priority Collector when it is perceived to
be operating again.

Recovery: When a Session is initially established from an Exporter to a Collector, a
unique Document Id is assigned by the Exporter in the SESSION START Message.
See the 2.5 Documents section for more information. If a Session is subsequently
reestablished with a Collector as part of recovery, and it represents the continuation
of some prior stream of data, the Exporter SHOULD indicate this by using the same
Document Id as was used in the previous Active Session. In this recovery situation
the DSN SHOULD be in sequence with the previous stream. This MAY include
sequence numbers already used, if some records which were not acknowledged on
the old stream are being retransmitted.

In summary, the Collection System eventually receives all the Data Records,
possibly through more than one Collector. The Exporter MUST convey all the records
it received to the Collection System. This may result in duplicate records in the
Collection System.

In this case, the DSN MUST be used to remove duplicates. To aid the process of
duplicate removal, whenever a Data Record is re-sent (sent for any time past the first
time an attempt to send it has been attempted) to another Collector, an appropriate
duplication flag of the DATA Message (or REQUEST Message) is set to indicate that
this Data Record might be a duplicate. Please note: A RESPONSE Message does
not have a duplicate flag since there is no scenario where a response Message
needs to be resent.

2.13. Protocol Summary

The following diagrams (figures 2 and 3) illustrate the basic state machine employed
by an IPDR Exporter and Collector pair. . .

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 23 of 75

Figure 2: IPDR/SP State Diagram 1

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 24 of 75

Figure 3: IPDR/SP State Diagram 2

Figure 4, on the next page, illustrates the IPDR/SP protocol sequence diagram.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 25 of 75

Figure 4: IPDR/SP protocol sequence diagram

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 26 of 75

2.13.1. IPDR/SP version discovery

Either party (either Exporter or Collector) MAY inquire about the IPDR/SP version and
transport layer support by sending a UDP packet on an agreed UDP port. If the
receiving party implements version discovery, it MUST respond to this request with a
UDP packet carrying the protocol version, the transport type and the port number
used for the specific transport.

The inquiring party sends a VERSION REQUEST Message to query the other party's
protocol support. The receiving party will respond with a VERSION REQUEST
RESPONSE Message that contains details about the protocols that it supports

2.13.2. Protocol Sequence

1. Connection phase
a. A Collector or an Exporter initiates a connection by sending a CONNECT

Message.
b. The corresponding Exporter or Collector respectively responds to the

CONNECT Message with a CONNECT RESPONSE Message
During this phase the Collector and the Exporter agree on:

 The KEEP ALIVE interval (of the remote side). In case the KEEP ALIVE
Message is not received on time (during a low traffic period – no other
Message is received) the connection is terminated. It is measured in second
units.

 The support of (based on the capabilities flags):
 Template negotiation
 Simultaneous multi-Sessions
 User Defined Data Types
 Request/Response capability
 Further Capabilities

2. Session initiation phase

a. A Collector sends the FLOW START Message as soon as it is ready to
start the Session.

b. The Exporter sends the TEMPLATE DATA Message as soon as it
receives the FLOW START Message from the Collector. The TEMPLATE
DATA Message it sends is either:

i. Negotiable (sent only to the high priority Collector, only if both the
Exporter and the Collector support Template negotiation and only
if the Exporter policy determines that Template negotiation is
needed – see 2.c) or

ii. Non-negotiable (see 2.d)
c. Negotiation phase (this phase is reached in case the Exporter sends

Negotiable Template Data, see 2.b.i)
i. Optionally the Collector can respond to the negotiable

TEMPLATE DATA Message with a MODIFY TEMPLATE
Message (in case Template negotiation is requested) in order to
change the accounting information for a particular Session. For
example it may be required to receive a subset of the Fields

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 27 of 75

available from the Exporter in order to reduce throughput
requirements. At this stage the Exporter determines the Template
information (the result of the Template negotiation) for the Session
and will respond with MODIFY TEMPLATE RESPONSE

ii. Next (if the collector does not want to negotiate the Template
Data or after a Collector that requested Template negotiation
receives a MODIFY TEMPLATE RESPONSE Message), the
Collector MUST send a FINAL TEMPLATE DATA ACK Message.

iii. When the Exporter receives a FINAL TEMPLATE DATA ACK
Message from the negotiator Collector, it MUST first send non-
negotiable TEMPLATE DATA to all other Collectors of the specific
Session (case 2.d). Then it will send a START SESSION
Message to the high priority Collector and the Session will begin.

d. In case the Exporter sends non negotiable TEMPLATE DATA (see 2.b.ii)
i. The Collector MUST respond with FINAL TEMPLATE DATA ACK
ii. Following that the Exporter MUST respond with SESSION

START Message and the Session will begin.
3. Active Session phase

a. DATA Messages:
i. At this stage the Exporter sends DATA Messages according to

the agreed set of Templates.
ii. The Collector MUST respond with DATA ACKNOWLEDGE

Message
b. REQUEST Messages:

i. A Collector or an Exporter can initiates a request by sending a
REQUEST Message.

ii. If and only if, a REQUEST Message with a "response required"
flag set is received than the counter party (the corresponding
Exporter or Collector respectively) MUST respond to the
REQUEST Message with a RESPONE Message,

iii. REQUEST and RESPONSE Messages MUST be formed
according to the agreed set of Templates.

c. In some cases a Collector MAY need to renegotiate the Template data
(assuming Template negotiation is supported).

i. The Collector can request a Template data negotiation by sending
a START NEGOTIATION Message to the Exporter.

ii. The Exporter MUST respond to the START NEGOTIATION
Message with either:

1. A START NEGOTIATION REJECT Message. In this case
the Session will continue with no effect.

2. A SESSION STOP Message with the reason code flag
set to "start negotiation ack". Then negotiation begins as
described in 2b-2d.

d. In some cases an Exporter MAY need to renegotiate the Template data
(assuming Template negotiation is supported). In order to do it, it MUST
send SESSION STOP Message with the reason code flag set to
"renegotiation is required". At this stage the negotiation begins as
described in 2b-2d.

4. During a connection the Collector can send to the Exporter:

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 28 of 75

a. A GET SESSION Message. The Exporter MUST respond to this
Message with the GET SESSION RESPONSE that contains all the
existing Sessions.

b. A GET TEMPLATES Messages. The Exporter MUST respond to this
Message with the GET TEMPLATES RESPONSE Message that contains
the Template set for the specific Session.

2.14. Backwards Compatibility

IPDR/SP builds upon two existing specifications, namely IPDR’s XDR file format and
RFC3423, Common Reliable Accounting for Network Elements (CRANE). As part of
this evolution, some level of compatibility with previous versions is a goal.

IPDR/SP uses the same basic version negotiation mechanism as the original CRANE
and borrows much of its message set from CRANE. IPDR/SP Messages are
distinguished from CRANE Messages by advancing the version Field in the Message
headers to 2.

Beginning with IPDR version 3.5 IPDR/XDR and IPDR/XML formats are able to
record the contents of any IPDR/SP stream as documents. In the case of IPDR/XML,
this is supported by further expansion of the XML-Schema subset which may be used
in creating IPDR Service Definitions, and the generation of XML document instances
which are valid according to the Schema.

In the case of IPDR/XDR, there are complementary extensions which align it with the
encoding model of IPDR/SP messages. Advancing the version number in the
IPDR/XDR header from 3 to 4 indicates IPDR/XDR documents capable of preserving
any IPDR/SP flow of accounting records.

The reader may notice some discrepancies between IPDR/XDR’s Template and data
encodings and those of IPDR/SP. These are considered artifacts of the streaming
versus documented oriented design center. IPDR/XDR and IPDR/SP are aligned in
terms of their information content.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 29 of 75

3. Message Format

IPDR/SP describes its message format using an augmented form of RFC1832,
External Data Representation (XDR) [XDR]. One augmentation of XDR used by
IPDR is that No 32-bit alignment padding. Beginning in IPDR 3.5, both IPDR/XDR
and IPDR/SP remove the padding constraint specified by XDR. This allows for
specification to the byte level of structures.

By using this extension the protocol specification can move away from the use of
“ASCII art” common in most IETF protocol specifications and use a more concise and
formal C style syntax for describing protocol message formats.

Note, it would be possible to create automated tools to generate ASCII art from the
XDR IDL specification language. The converse would be significantly more difficult.

3.1. XDR equivalence to “ASCII art”

The use of XDR specification of protocol message structure is a departure from the
majority of IETF protocols operating in the accounting domain. Rather the typical
mode of specification is based on the use of “ASCII art” diagrams which illustrate a
series of bytes and the position various Fields occupy in that byte table.

The XDR Augmentation cited above, allows the same information to be conveyed in
the more concise and machine consumable format.

Note that one might also consider a “pure” XML mechanism for this based on
additional Schema constraints and mapping policies. However, existing tools and
specifications supporting XDR’s byte level encoding make the use of XDR IDL
convenient for our current problem.

By way of example, the basic mapping from an XDR style specification to its
equivalent ASCII art model is illustrated below:

struct ExampleA {

 int field1;

 char field2;

 char field3;

}

struct ExampleB {

 struct ExampleA fieldA;

 UTF8String fieldB;

}

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 30 of 75

Example B layout:

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| field1 |

+-+

| field2 | field3 | fieldB string len (hi bytes)|

+-+

| fieldB string len (lo bytes) | fieldB… |

+-+

| … |

+-+

| … fieldB |

+-+j

Figure 5: Example of mapping from an XDR style specification to its
equivalent ASCII art model

The Example B structure has at its beginning an embedded Example A structure.
The ASCII art shows the Example A structure elements in their appropriate sizes and
position.
UTF8String’s have a 32-bit length Field according to XDR encoding rules. Since we
are augmenting the XDR encoding by doing byte level packing, the string length is
not aligned to 32-bit word boundaries. The fieldB string is variable length, so is
shown spanning multiple bytes of indeterminate length. Note that fieldB’s contents
also begin at the packed byte boundary, no 32-bit boundary alignment is performed.

If 32-bit alignment is desired, it can be achieved by populating structures with a
reserved char, or several to pad out the location of a desired aligned Field.

3.2. Common Header

All IPDR/SP Messages begin with the following 8 byte header:

struct IPDRStreamingHeader {

 char version; /* version of protocol, for this version, set to 2 */

 char messageId; /* the ID of this Message (see MessageIds) */

 char sessionId; /* the ID of this Session or 0 if not Session-specific */

 char messageFlags; /* reserved/unused and set to 0 */

 int messageLen; /* length in bytes of Message including header */

};

It is followed by a variable length message payload. Some of the Messages do not
have any additional payload part. All IPDR/SP Messages are XDR encoded in
Network Byte order.

Details of each Field are described below:

version
Indicates the supported IPDR/SP implementation. This Field MUST be set to 2.

messageId
Identifies the type of the Message. The Message IDs defined by IPDR/SP 2.1 are
defined as follows. See Table 1 in section 4 for additional details of each Message.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 31 of 75

sessionId
Identifies the Session with which the Message is associated. The Session ID is
ignored in the case of basic connection related Messages. Connection related
Messages are: CONNECT, CONNECT RESPONSE, DISCONNECT, KEEP ALIVE,
GET SESSIONS, GET SESSIONS RESPONSE and ERROR. For implementations
which do not support multiple Sessions, the sessionId 0 SHOULD always be used.

messageFlags
Used to identify options associated with the Message. Currently no flags are defined.

messageLen
The total length of the IPDR/SP Message in octets including the header.

The Message set supported by a basic valid implementation is dependent on the
capabilities identified in the connection request.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 32 of 75

4. Message Details

Table 1 summarizes the message set defined for IPDR/SP v2.2. The following
sections will provide details on the structure of each Message, using the augmented
XDR encoding described in the HUMessage FormatUH section.

Category ID Message Direction Comments

Connection 0x05 CONNECT Either

0x06 CONNECT RESPONSE Either Opposite of

CONNECT

0x07 DISCONECT Either

Errors 0x23 ERROR Either In lieu of response,

underlying

connection cleared

Flow Control 0x01 FLOW START C→E Framed in

Sessions 0x08 SESSION START E→C

0x03 FLOW STOP C→E

0x09 SESSION STOP E→C

Template 0x10 TEMPLATE DATA E→C

0x1a MODIFY TEMPLATE C→E Optional

0x1b MODIFY TEMPLATE RESPONSE E→C Optional

0x13 FINAL TEMPLATE DATA ACK C→E

0x1d START NEGOTIATION C→E Optional

0x1e START NEGOTIATION REJECT E→C Optional

Data 0x20 DATA E→C

0x21 DATA ACKNOWLEDGE C→E

Request /

Response

0x30 REQUEST Either

0x31 RESPONSE Either If and only if, the

request requires

response.

State

Independent

0x14 GET SESSIONS C→E

0x15 GET SESSIONS RESPONSE E→C

0x16 GET TEMPLATES C→E

0x17 GET TEMPLATES RESPONSE E→C

0x40 KEEP ALIVE Either May affect fail-

over

Table 1: IPDR/SP Messages

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 33 of 75

4.1. Connection

Connection related Messages deal with moving the state machine for an IPDR/SP
Exporter and Collector from the Disconnected State to the Connected state. For more
details on the state machine, see the figures and discussion in the 2.13 Protocol
Summary section. The CONNECT and CONNECT RESPONSE Messages provide
for both the acknowledgement of both peers that they are capable of participating in
the exchange of records via IPDR/SP as well as a means of both peers indicating any
optional protocol capabilities they support. To use any optional capability, both
Exporter and Collector MUST indicate their support of that capability.

4.1.1. CONNECT

The creator of the underlying reliable transport connection MUST send the
connection message. Either the Exporter or the Collector MAY initiate the underlying
transport connection.
Following is the IDL fragment that defines the formal specification of the CONNECT
Message:

struct Connect {

 struct IPDRStreamingHeader header;

 int initiatorId; /* ID of the NE (Collector/Exporter) within

 the proper network */

 short initiatorPort; /* The transport protocol port number of the initiator */

 int capabilities; /* an array of capability bits for capability negotiation */

 int keepAliveInterval /* the maximum delay between some indication from remote, */

 /* expressed in seconds */

 UTF8String vendorId; /* The vendor ID of the initiator (Exporter/Collector) */

};

Fields descriptions:
header
The common header (see the Common Header section)

initiatorId
ID of the initiator (Collector or Exporter).

initiatorPort
The transport protocol port number of the initiator

capabilities
An array of capability bits for capability negotiation.

 MSB LSB

F A R T M U

Figure 6: The array of capability bits

The capabilities flags indicate supported options for this connection. Specifically the
following capabilities are optional:

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 34 of 75

 USER DEFINED TYPE (see 'U' in figure 6 above) – if set, this flag indicates
that the accounting records being sent may include data of user defined data
types (not only elementary data types).

 MULTISESSION (see 'M' in figure 6 above) – if set indicates that the party
allows support for multiple Sessions of accounting records. Simpler
equipment and implementations may chose to only support a single stream

 TEMPLATE NEGOTIATION (see 'T' in figure 6 above) – if set allows the
Collector to request a different set of accounting records or Fields than that
advertised initially by the Exporter. Simpler Exporters MAY choose not to
support negotiation. In this case this capability SHOULD be off, and
completing the connection dialog puts the two parties in the Connected state.
Negotiating Exporters and Collectors enter a Template negotiation state after
exchanging the connection dialog when this flag is set

 REQUEST RESPONSE (see 'R' in figure 6 above) – if set allows
REQUEST/RESPONSE messages to flow between an Exporter and a
Collector. Either the Collector or the Exporter can initiate request by sending
REQUEST Message to the counter party. Optionally the other party may
need to respond with a RESPONSE Message.

 ADDITIONAL USER DEFINE TYPES (see 'A' in figure 6 above)- ability to
define additional (UDT) types in the Modify Template and Modify Template
Response messages

 FURTHER CAPABILITIES (see 'F' in figure 6 above) – if set indicates that
further capabilities (more than those capabilities that are encapsulated in this
32 bits capabilities array) can be negotiated. The exact negotiation
mechanism of further capabilities is out of scope of this spec revision

keepAliveInterval
The KEEP ALIVE interval indicates the maximum amount of idle time on a
connection before a KEEP ALIVE Message MUST be sent to assure the underlying
transport connection is still available. It is the maximum allowed delay between some
indications from a remote are received in the connection level. This value is
expressed in seconds.

vendorId
A Vendor Identifier is a string that identifies the vendor that created the initiator
(Exporter/Collector).

The CONNECT Message has the messageId set to 0x05 in the header.

4.1.2. CONNECT RESPONSE

The recipient of a connect Message MUST send a CONNECT RESPONSE. The

response indicates the desired Keep Alive interval of the responder as well as its

capabilities.

Following is the IDL fragment that defines the formal specification of the

CONNECT RESPONSE Message:

struct ConnectResponse {

 struct IPDRStreamingHeader header;

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 35 of 75

 int capabilities; /* an array of capability bits for capability negotiation */

 int keepAliveInterval; /* the maximum delay between some indication from remote */

 /* It is expressed in seconds. */

 UTF8String vendorId; /* the vendor ID of the responder (Exporter/Collector) */

};

Fields descriptions:

header

The common header (see the Common Header section)

capabilities

The meaning of capabilities is the same as defined in CONNECT.

Note that the responder SHOULD only indicate those capabilities which were

previously sent by the connecting party and which it is willing to support.

Identifying capabilities which were not proposed by the connector has no effect,

those capabilities are not available for the current connection.

keepAliveInterval

The meaning of keepAliveInterval is the same as defined in Connect.

vendorId

A Vendor Identifier is a string that identifies the vendor that created the responder

(Exporter/Collector).

The CONNECT RESPONSE Message has the messageId set to 0x06 in the header

4.1.3. DISCONNECT

Either party in the course of graceful termination of a connection MAY send the
DISCONNECT Message. It is not acknowledged and SHOULD be followed by
sending party disconnecting the underlying transport, and the receiving party, issuing
the corresponding close of connection on their side.

Following is the IDL fragment that defines the formal specification of the
DISCONNECT Message:

struct Disconnect {

 struct IPDRStreamingHeader header;

};

Field description:
header
The common header (see the Common Header section)

The Disconnect has a messageId of 0x07 in the header

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 36 of 75

4.2. Errors

Either the Exporter or the Collector MAY issue an ERROR Message in the event
where either a communication error has been detected or other failures impacting the
connection. An error Message, that is not session oriented, MUST be followed by the
sender initiating disconnection of the underlying transport. The recipient of an
ERROR will also issue the corresponding close of connection on their side.

4.2.1. ERROR

Following is the IDL fragment that defines the formal specification of the ERROR
Message:

struct Error {

 struct IPDRStreamingHeader header;

 int timeStamp; /* time of error (in seconds from epoch time) */

 short errorCode; /* The error code field consists of two parts: */

 /* Session oriented flag: it is a one bit flag. */

 /* It is the MSB of the errorCode field. It */

 /* indicates whether the error is specific for */

 /* the session (=1) or it is a general error and*/

 /* thus it is not specific to the session (=0). */

 /* The code ID: The rest 15 LSBs of the */

 /* errorCode field, specifies the error code ID */

 /* (0 - 32767). Values of 0-255 are reserved for*/

 /* standard error codes. */

 /* 0 = keepalive expired */

 /* 1 = Message invalid for capabilities */

 /* 2 = Message invalid for state */

 /* 3 = Message decode error */

 /* 4 = process terminating */

 /* 5 = error in User Defined Type/s */

 /* Values > 255 may be used for vendor specific */

 /* error codes */

 UTF8String description;

};

Fields descriptions:
header
The common header (see the Common Header section)

timestamp
The time of the error occurrence (in seconds from epoch time)

errorCode
The error code field consists of two parts:
1. Session oriented flag: It is a one bit flag. It is the MSB of the errorCode field. It

indicates whether the error is specific for the session (=1) or it is a general error
and thus it is not specific to the session (=0). In the last case the ERROR
Message MUST be followed by the sender initiating disconnection of the
underlying transport.

2. The code ID: The rest 15 LSBs of the errorCode field, specifies the error code ID
(0 - 32767) as follows:

 Values of 0-255 are reserved for standard reason codes:
 0 = keep alive expired

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 37 of 75

 1 = message invalid for capabilities
 2 = message invalid for state
 3 = message decode error
 4 = process terminating
 5 = error in the definition of User Defined Types for example if a UDT

is based on a UDT that was not defined earlier in the same session.

 Values > 255 may be used for vendor specific codes.

description
Description of the error

The ERROR Message has the messageId set to 0x23 in the header

4.3. Flow Control

Appropriate flow control is necessary for managing the reliable delivery of accounting
records and ensuring the Collector has recorded them.

Flow control deals with the acknowledging and throttling of exported streams of
records, as well as enabling redundant Collectors to perform rapid failover with
duplicate detection.

Bear in mind that IPDR/SP already assumes an underlying reliable transport.
However, the protocols at this level leave ambiguous details about the disposition of
data in transit at the time of a failure. A simple application level acknowledgement
scheme, based on windows of configurable sizes, allows for this necessary exchange
between the Exporter and Collector, while imposing minimal overhead

4.3.1. FLOW START

FLOW START Messages may only be sent by the Collector to indicate its willingness to
participate in a Session for a particular stream of accounting records.

Following is the IDL fragment that defines the formal specification of the FLOW

START Message:

struct FlowStart {

 struct IPDRStreamingHeader header;

};

Field description:

header
The common header (see the Common Header section)

The FLOW START Message has the messageId set to 0x01 in the header

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 38 of 75

4.3.2. SESSION START

SESSION START Messages are only sent by the Exporter to indicate that an

accounting stream is now actively flowing to a Collector. This distinguishes

between the situations where no accounting records are available and when

accounting records are being sent to an alternate Collector.

Following is the IDL fragment that defines the formal specification of the

SESSION START Message:

struct SessionStart {

 struct IPDRStreamingHeader header;

 int exporterBootTime; /* boot time of Exporter(in seconds from epoch time)*/

 long firstRecordSequenceNumber;/* first sequence number to be expected */

 long droppedRecordCount /* number of records dropped in gap situations */

 boolean primary; /* indication that the Collector is the primary */

 int ackTimeInterval; /* the maximum time between acks from Collector */

 /* (in second units) */

 int ackSequenceInterval; /* the maximum number of unacknowledged records */

 char documentId[16]; /* the UUID associated with the info being sent */

 /* in this Session */

};

Fields descriptions:

header
The common header (see the Common Header section)

exporterBootTime

Boot time of Exporter (in seconds from epoch time).

firstRecordSequenceNumber

First sequence number, of the Record Data, to be expected

droppedRecordCount

Number of records dropped in gap situations.

primary

Indication that the Collector is the primary

ackTimeInterval

The maximum time between acknowledges from Collector (in second units)

ackSequenceInterval

The maximum number of unacknowledged records

documentId

The UUID associated with the info being sent in this session

Notice: Data Records have 64-bit counters. Together with a UUID that represents

the document, it is possible to uniquely distinguish records from one another.

The SESSION START Message has the messageId set to 0x08 in the header.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 39 of 75

4.3.3. FLOW STOP

FLOW STOP Messages may only be sent by the Collector to indicate that it is no

longer able to participate in a particular Session. The reasonInfo Field contains a

string which the Collector MAY use to provide additional details. The Exporter

MAY choose to log this information for operational support purposes.

Following is the IDL fragment that defines the formal specification of the FLOW

STOP Message:

struct FlowStop {

 struct IPDRStreamingHeader header;

 short reasonCode; /* values of 0-255 are reserved for standard */

 /* reason codes. Values > 255 may be used for */

 /* vendor specific codes. */

 /* 0 = normal process termination */

 /* 1 = termination due to process error */

 UTF8String reasonInfo;

};

Fields descriptions:

header

The common header (see the Common Header section)

reasonCode

The reasons codes:

 values of 0-255 are reserved for standard reason codes.

o 0 = normal process termination

o 1 = termination due to process error

 Values > 255 may be used for vendor specific codes.

reasonInfo

Description of the reason to stop the Flow.

The FLOW STOP Message has the messageId set to 0x03 in the header

4.3.4. SESSION STOP

SESSION STOP Messages are only sent by the Exporter to indicate that a

Collector is no longer the active recipient of a stream of accounting records.

Following is the IDL fragment that defines the formal specification of the

SESSION STOP Message:

struct SessionStop {

 struct IPDRStreamingHeader header;

 short reasonCode; /* values of 0-255 are reserved for standard */

 /* reason codes. Values of > 255 may be used for*/

 /* vendor-specific codes. */

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 40 of 75

 /* 0 = end of data for session */

 /* 1 = handing off to higher priority Collector */

 /* 2 = Exporter terminating */

 /* 3 = congestion detected */

 /* 4 = renegotiation is required */

 /* 5 = start negotiation acknowledge */

 /* 6 = end of IPDRDoc */

 /* 7 = Template data was updated */

 UTF8String reasonInfo;

};

Fields descriptions:

header

The common header (see the Common Header section)

reasonCode

The reasons codes are enumerated in the IDL fragment above.

reasonInfo

Description of the reason to stop the Session.

The SESSION STOP Message has the messageId set to 0x09 in the header

4.4. Template

4.4.1. TEMPLATE DATE

The Exporter MUST send a TEMPLATE DATA Message after it gets a FLOW

START Message from the Collector (before the establishment of a Session). The

LSB of the TEMPLATE DATA flags Field, indicates whether the TEMPLATE

DATA is negotiable (=1) or not (=0). The Template block identifies all the

Templates that will be used over this Session. Sending Information Messages that

identify Template Ids not carried in the TEMPLATE DATA Messages is invalid,

and SHOULD result in an ERROR Message being sent with decode error as the

cause.

Following is the IDL fragment that defines the formal specification of the

TEMPLATE DATA Message in case there was no capability negotiation or in

case during capability negotiation it was agreed that User Defined Types are not

supported:

struct TemplateData {

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template */

 /* definitions Changes in Template */

 /* MUST use a different configId */

 /* (0 if unused) */

 char flags; /* LSB 0=NN 1=N; rest of bits Unused (reserved)*/

 TemplateBlock templates<>; /* Definitions of Templates supported */

};

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 41 of 75

Fields descriptions:

header

The common header (see the Common Header section)

configId

The configId is the Identifier of a specific Template Set Configuration. It is

changed whenever the Template Set Configuration is changed. It is set to 0 if

unused.

flags

LSB 0 = Non Negotiable 1 = Negotiable; rest of bits Unused(reserved)

templates

An array of templateBlock - Definitions of the supported Templates Set

Configuration. If it is negotiable TEMPLATE DATA Message, this is the basis

for the negotiation.

Following is the IDL fragment that defines the formal specification of the

TEMPLATE DATA Message in case during capability negotiation it was agreed

that User Defined Types are supported:

struct TemplateDataWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template */

 /* definitions Changes in Template */

 /* MUST use a different configId */

 /* (0 if unused) */

 TypeDefinition availableDefinedTypes<> /* The available User Defined Types */

 char flags; /* LSB 0=NN 1=N; rest of bits Unused (reserved)*/

 TemplateBlock templates<>; /* Definitions of Templates supported */

};

Fields descriptions:

header:

Same as the corresponding field at the TemplateData structure above

configId

Same as the corresponding field at the TemplateData structure above

availableDefinedTypes

Each element of this array is a definition of a User Defined Type that is defined

based on either Elementary Type or User Defined Type that was earlier defined.

flags

Same as the corresponding field at the TemplateData structure above

templates

Same as the corresponding field at the TemplateData structure above

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 42 of 75

4.4.2. MODIFY TEMPLATE

If the Collector receives a negotiable TEMPLATE DATA Message, the Collector

MAY issue a MODIFY TEMPLATE request in order to alter the set of

accounting records and their Fields which will be transferred.

The Exporter is not obligated to recognize any of the proposed changes, but

indicates on a MODIFY TEMPLATE RESPONSE the set of Templates for that

Session after applying any approved changes in the MODIFY TEMPLATE

Message.

Following is the IDL fragment that defines the formal specification of the

MODIFY TEMPLATE Message in case there was no capability negotiation or in

case during capability negotiation it was agreed that User Defined Types are not

supported:

Error! Reference source not found.

Fields descriptions:

header

The common header (see the Common Header section)

configId

The configId is the Identifier of a specific Template Set Configuration. The

Collector has to set it to be the same as received from the Exporter.

flags

Unused and reserved

changeTemplates

An array of templateBlock – The suggested Template Set Configuration.

Following is the IDL fragment that defines the formal specification of the

MODIFY TEMPLATE Message in case during capability negotiation it was

agreed that User Defined Types are supported:

struct ModifyTemplateWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template MUST use a different */

 /* configId (0 if unused) */

 TypeDefinition additionalDefinedTypes<> /* Additional User Defined Types for */

 /* the session */

 char flags; /* Unused and reserved */

 TemplateBlock changeTemplates<>; /* Definitions of Templates */

};

Fields descriptions:

header

Same as the corresponding field at the ModifyTemplate structure above

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 43 of 75

configId

Same as the corresponding field at the ModifyTemplate structure above

additionalDefinedTypes

Each element of this array is a definition of a User Defined Type that is defined

based on either Elementary Type or User Defined Type that was earlier defined.

These are additional types on top of User Defined Types that were previously

defined during this session.

flags

Same as the corresponding field at the ModifyTemplate structure above

changeTemplates

Same as the corresponding field at the ModifyTemplate structure above

The MODIFY TEMPLATE Message has the messageId set to 0x1a in the header

4.4.3. MODIFY TEMPLATE RESPONSE

Upon receiving a MODIFY TEMPLATE Message, the Exporter is not obligated to
recognize any of the proposed changes. It indicates on a MODIFY TEMPLATE
RESPONSE the set of Templates for that Session after applying any approved
changes in the MODIFY TEMPLATE Message.

Following is the IDL fragment that defines the formal specification of the MODIFY
TEMPLATE RESPONSE Message in case there was no capability negotiation or in
case during capability negotiation it was agreed that User Defined Types are not
supported:

struct ModifyTemplateResponse {

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template SHOULD use a different */

 /* configId (0 if unused) */

 char flags; /* Unused and reserved */

 TemplateBlock resultTemplates<>; /* Definitions of Templates - final results */

};

Fields descriptions:
header
The common header (see the Common Header section)

configId
The configId is the Identifier of a specific Template Set Configuration. It is changed
whenever the Template Set Configuration is changed. It is set to 0 if unused.

flags
Unused and reserved.

resultTemplates

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 44 of 75

The resultTemplates is an array of templateBlocks – The determined Template Set
Configuration for the following Active Session.

Following is the IDL fragment that defines the formal specification of the MODIFY
TEMPLATE RESPONSE Message in case during capability negotiation it was
agreed that User Defined Types are supported:

struct ModifyTemplateResponseWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template SHOULD use a different */

 /* configId (0 if unused) */

 TypeDefinition additionalDefinedTypes<> /* Additional User Defined Types for the */

 /* session */

 char flags; /* Unused and reserved */

 TemplateBlock resultTemplates<>; /* Definitions of Templates - final results */

};

Fields descriptions:
header
Same as the corresponding field at the ModifyTemplateResponse structure above

configId
Same as the corresponding field at the ModifyTemplateResponse structure above

additionalDefinedTypes
Each element of this array is a definition of a User Defined Type that is defined based
on either Elementary Type or User Defined Type that was earlier defined. These are
additional types on top of User Defined Types that were previously defined during this
session. Please note: these types are NOT the types defined in the
additionalDefinedTypes field of the MODIFY TEMPLATE message. In case user
defined types are defined in the MODIFY TEMPLATE message, the types defined in
this (MODIFY TEMPLATE RESPONSE) message are on top of them.

flags
Same as the corresponding field at the ModifyTemplateResponse structure above

resultTemplates
Same as the corresponding field at the ModifyTemplateResponse structure above

The MODIFY TEMPLATE RESPONSE Message has the messageId set to 0x1b in
the header

4.4.4. FINAL TEMPLATE DATA ACK

The Collector sends a FINAL TEMPLATE DATA ACK to indicate that it is satisfied
with the received TEMPLATE DATA and does not require a negotiation or to confirm
that it got the MODIFY TEMPLATE DATA RESPONSE Message and it is ready to
begin a Session-based delivery of accounting records.
Following is the IDL fragment that defines the formal specification of the FINAL
TEMPLATE DATA ACK Message:

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 45 of 75

struct FinalTemplateDataAck {

 struct IPDRStreamingHeader header;

};

Field description:
header
The common header (see the Common Header section)

The FINAL TEMPLATE DATA ACK Message has the messageId set to 0x13 in the
header

4.4.5. START NEGOTIATION

The Collector sends a START NEGOTIATION in order to request re-negotiation. The
Exporter can either:
- accept the request and initiate a negotiation by stopping the Session or
- reject the request by sending the START NEGOTIATION REJECT Message.

Following is the IDL fragment that defines the formal specification of the START
NEGOTIATION Message:

struct StartNegotiation {

 struct IPDRStreamingHeader header;

};

Field description:
header
The common header (see the Common Header section)

The START NEGOTIATION Message has the messageId set to 0x1d in the header

4.4.6. START NEGOTIATION REJECT

The Exporter sends a START NEGOTIATION REJECT in order reject the Collector
request for renegotiating the Template Data

Following is the IDL fragment that defines the formal specification of the START
NEGOTIATION REJECT Message:

struct StartNegotiationReject {

 struct IPDRStreamingHeader header;

};

Field description:
header
The common header (see the Common Header section)

The START NEGOTIATION REJECT Message has the messageId set to 0x1e in the
header

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 46 of 75

4.5. Data

The DATA Message is the vehicle for all accounting records moved from the Exporter
towards a Collector. The DATA Message uses the templating model described
earlier to reduce the amount of redundant information passed in each Message.
Specifically, by specifying in advance the Fields and their Types and their order, the
encoded Data Record can pack all the values together according to the augmented
XDR encoding.

A sequence number does data acknowledgement on a configurable window of
outstanding DATA Messages determined by the Exporter. Because the underlying
transport is reliable, this window may be set very large (e.g., hundreds or thousands
of records) and does not grow and shrink over the Session.

The Exporter also specifies a minimal ack interval, to ensure timely
acknowledgements when accounting record traffic volumes are low.

4.5.1. DATA

The Exporter sends DATA Messages to a Collector in the context of a Session. The
Session ID is carried in the message header.

Following is the IDL fragment that defines the formal specification of the DATA
Message:

struct Data {

 struct IPDRStreamingHeader header;

 short templateId; /* a Template ID relative to the Session defined */

 /* in the header. The Fields in this Template were */

 /* reported at the beginning of the Session via */

 /* TEMPLATE DATA Messages */

 short configId; /* (see above) */

 char flags; /* currently just duplicate flag */

 long sequenceNum; /* Session relative sequence number of this record */

 opaque dataRecord<>; /* XDR encoded Fields based defined by templateId */

};

Fields descriptions:
header
The common header (see the Common Header section)

templateId
The Template ID in the DATA Message refers to a Template Identifier previously sent
by the Exporter on a TEMPLATE DATA Message. This describes the Fields, their
order and Type and is used to define the augmented XDR encoding applied to
construct the binary dataRecord.

configId
The configId is the Identifier of a specific Template Set Configuration. It is changed
whenever the Template Set Configuration is changed. It is set to 0 if unused.

flags

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 47 of 75

The flags Field contains one defined flag, duplicate, represented by the flags LSB,
which if set indicates that this record was previously sent to another Collector which
failed to acknowledge its receipt.

sequenceNum
The sequence number is a relative to a Session. It increases by one for each
accounting record sent. The number begins at 0 when a new Session Document is
initiated. See the SESSION START section.

dataRecord
The dataRecord is an array of opaque - XDR encoded Fields based defined by
templateId and configId.

The DATA Message has the messageId set to 0x20 in the header

4.5.2. DATA ACKNOWLEDGE

The DATA ACKNOWLEDGE Message is the indication of acknowledgement

from a Collector that Data received and handled. It can be assumed by the

Exporter to mean that it no longer has responsibility for these Data Records and

may remove them from its transient buffer.

Following is the IDL fragment that defines the formal specification of the DATA

ACKNOWLEDGE Message:

struct DataAcknowledge {

 struct IPDRStreamingHeader header;

 short configId; /* (see above) */

 long sequenceNum; /* Session relative sequence number of last record */

 /* received in a series. */

};

Fields descriptions:

header
The common header (see the Common Header section)

configId

The configId is the Identifier of a specific Template Set Configuration. It is

changed whenever the Template Set Configuration is changed. It is set to 0 if

unused.

sequenceNum

Session relative sequence number of the last record received and handled in a

series.

The DATA ACKNOWLEDGE Message has the messageId set to 0x21 in the

header.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 48 of 75

4.6. Request/Response

In any case that either an Exporter or a Collector has to request for information

from the counter party during an Active Session they can send REQUEST

Message.

The data encapsulated within these messages (REQUEST and RESPONE) and

their interpretations are application dependent. The transferred data form is based

on template/s (and thus will also minimize the amount of information that is

transferred) that the Collector and Exporter are familiar with.

A requestNumber field (a unique ID in the context of the specific IPDR

document) serves as a correlation reference between the REQUEST Message and

the RESPONSE Message.

4.6.1. Request

The REQUEST Message CAN be send either by the Collector or by the Exporter

in the context of a Session. The Session ID is carried in the message header.

Following is the IDL fragment that defines the formal specification of the

REQUEST Message:

struct Request {

 struct IPDRStreamingHeader header;

 short templateId; /* a Template ID relative to the Session defined */

 /* in the header. The Fields in this Template were */

 /* reported at the beginning of the Session via */

 /* TEMPLATE DATA Messages */

 short configId; /* (see above) */

 char flags; /* currently just: */

 /* 1) duplicate flag */

 /* 2) is response required (1=true) */

 long requestNumber; /* request number of this record (unique per document) */

 opaque dataRecord<>; /* XDR encoded Fields based defined by templateId */

};

Fields descriptions:

header

The common header (see the Common Header section)

templateId

The Template ID in the REQUEST Message refers to a Template Identifier

previously sent by the Exporter on a TEMPLATE DATA Message. This

describes the Fields, their order and Type and is used to define the augmented

XDR encoding applied to construct the binary dataRecord.

configId

The configId is the Identifier of a specific Template Set Configuration. It is

changed whenever the Template Set Configuration is changed. It is set to 0 if

unused.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 49 of 75

flags

The flags Field contains two defined flags:

1. Duplicate flag, represented by the flags LSB, which if set indicates that this

request was previously sent (and response required but never received).

2. Response required flag, represented by the flags second bit (counting from the

LSB), which if set indicates that the request requires response.

requestNumber

The request number is unique in the context of specific IPDR document. Serve as

a correlation reference between the REQUEST Message and the RESPONSE

Message.

dataRecord

The dataRecord is an array of opaque - XDR encoded Fields based defined by

templateId and configId.

The REQUEST Message has the messageId set to 0x30 in the header

4.6.2. Response

RESPONSE Message is sent as response to specific request (either by the

Exporter or by the Collector) whenever such response is required. A certain flag

in the response message indicates whether the request has been fulfilled

successfully or not (the request failed e.g., has not been fulfilled).

Following is the IDL fragment that defines the formal specification of the

RESPONE Message:

struct Response {

 struct IPDRStreamingHeader header;

 short templateId; /* a Template ID relative to the Session defined */

 /* in the header. The Fields in this Template were */

 /* reported at the beginning of the Session via */

 /* TEMPLATE DATA Messages */

 short configId; /* (see above) */

 char flags; /* currently just success flag (0=fail, 1=success) */

 long requestNumber; /* The request number as defined by the corresponding request*/

 opaque dataRecord<>; /* XDR encoded Fields based defined by templateId */

};

Fields descriptions:

header
The common header (see the Common Header section)

templateId

The Template ID in the RESPONSE Message refers to a Template Identifier

previously sent by the Exporter on a TEMPLATE DATA Message. This

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 50 of 75

describes the Fields, their order and Type and is used to define the augmented

XDR encoding applied to construct the binary dataRecord.

configId

The configId is the Identifier of a specific Template Set Configuration. It is

changed whenever the Template Set Configuration is changed. It is set to 0 if

unused.

flags

The flags Field contains one defined flag, success, represented by the flags LSB,

which if set indicates that the request has been fulfilled successfully (the

interpretation of this success is out of the scope of this specification).

requestNumber

The request number is unique in the context of specific IPDR document. Serve as

a correlation reference between the RESPONSE Message and the REQUEST

Message.

dataRecord

The dataRecord is an array of opaque - XDR encoded Fields based defined by

templateId and configId.

The RESPONSE Message has the messageId set to 0x31 in the header

4.7. State Independent

The following Messages are available at any point in the state machine for

IPDR/SP.

The two query Messages, GET SESSIONS and GET TEMPLATES, are always

initiated by a Collector to identify the available streams of information emanating

from an Exporter.

The KEEP ALIVE Message is sent in low traffic periods to ensure that both

parties are still in communication. Note that some reliable transports such as TCP

may have large periods of time before signaling connection loss, hence an

application KEEP ALIVE allows for independent and low overhead monitoring of

the connection between and Exporter and a Collector. SCTP’s more configurable

timeout and failover mechanism may lessen the need for KEEP ALIVE, but this

conclusion has not yet been reached

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 51 of 75

4.7.1. GET SESSIONS

The GET SESSIONS Message is sent by a Collector to identify the streams of

accounting records available on each stream provided by this Exporter.

Note that based on authorization mechanisms not defined in this specification, an

Exporter MAY report different available Sessions to different Collectors.

Following is the IDL fragment that defines the formal specification of the GET

SESSIONS Message:

struct GetSessions {

 struct IPDRStreamingHeader header;

 short requestId; /* numeric ID of request for Sessions */

};

Fields descriptions:

header

The common header (see the Common Header section)

Note that the Session ID setting is ignored by the Exporter for this Message.

requestId

The requests Identifier - allows match up of response to request (it starts at zero

and is incremented. It is unique per Session)

The GET SESSIONS Message has the messageId set to 0x14 in the header

4.7.2. GET SESSIONS RESPONSE

An Exporter MUST respond to a GET SESSION Message with GET SESSIONS

RESPONSE Message that includes the list of Sessions available to this Collector.

The Session lists, may then in turn, be used by a Collector to issue GET

TEMPLATES Messages for specific Sessions of interest.

Following is the IDL fragment that defines the formal specification of the GET

SESSIONS RESPONSE Message:

struct GetSessionsResponse {

 struct IPDRStreamingHeader header;

 short requestId; /* allows match up of response to request */

 struct SessionBlock sessionBlocks <>;/* description of supported Sessions */

};

Fields descriptions:

header

The common header (see the Common Header section)

Note that the SessionId setting is ignored by the Collector for this Message.

requestId

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 52 of 75

The requests Identifier - allows match up of response to request

sessionBlocks

An array of SessionBlocks - description of supported Sessions

Following is the IDL fragment that defines the formal specification of the

SessionBlock structure:

struct SessionBlock {

 char sessionId;

 char sessionType; /* Type of streaming session */

 UTF8String sessionName; /* Optional names and description for the Session */

 UTF8String sessionDescription;

 int ackTimeInterval; /* the maximum time between acks for this Session in sec. */

 int ackSequenceInterval; /* the maximum number of unacknowledged data items */

} ;

Fields descriptions:

sessionId

sessionId is the Session Identifier.

sessionType

Type of Session: Integer values of first three least significant bits of this field

identify the following session types:

0 – Equivalent of sessionType Information Not Available

1 – Time Interval

2 – Ad-hoc

3 – Event

4 – Time Based Event

sessionName

The name of the Session

sessionDescription

The description of the Session

ackTimeInterval

The maximum time between acknowledges from Collector (in second units)

ackSequenceInterval

The maximum number of unacknowledged records

The GET SESSIONS RESPONSE Message has the messageId set to 0x15 in the

header

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 53 of 75

4.7.3. GET TEMPLATE

A Collector MAY identify the available Templates for a given Session context by

issuing the GET TEMPLATES Message. Responses are linked to requests by

setting the requestId.

Following is the IDL fragment that defines the formal specification of the GET

TEMPLATES Message:

struct GetTemplates {

 struct IPDRStreamingHeader header;

 short requestId; /* numeric ID of request for Templates */

};

Fields descriptions:

header

The common header (see the Common Header section)

requestId

The requests Identifier - allows match up of response to request (unique per

Session)

The GET TEMPLATES Message has the messageId set to 0x16 in the header

4.7.4. GET TEMPLATE RESPONSE

An Exporter MUST respond with a GET TEMPLATES RESPONSE for any valid

Session which the Collector is allowed to consume. If a sessionId is not available,

an ERROR Message SHOULD be sent and the connection terminated.

Following is the IDL fragment that defines the formal specification of the GET

TEMPLATES RESPONSE Message in case there was no capability negotiation

or in case during capability negotiation it was agreed that User Defined Types are

not supported:

struct GetTemplatesResponse {

 struct IPDRStreamingHeader header;

 short requestId; /* allows match up of response to request */

 short configId; /* (see above) */

 TemplateBlock currentTemplates <>; /* supported active Templates */

};

Fields descriptions:

header

The common header (see the Common Header section)

Note that the Session ID setting is ignored by the Exporter for this Message.

requestId

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 54 of 75

The requests Identifier - allows match up of response to request (unique per

Session)

configId

The configId is the Identifier of a specific Template Set Configuration. It is

changed whenever the Template Set Configuration is changed. It is set to 0 if

unused.

currentTemplates
An array of templateBlock (including the enable/disable setting for each field) for

the specific Session. (see the Template section).

Following is the IDL fragment that defines the formal specification of the GET

TEMPLATES RESPONSE Message in case during capability negotiation it was

agreed that User Defined Types are supported:

struct GetTemplatesResponseWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short requestId; /* allows match up of response to request */

 short configId; /* (see above) */

 TypeDefinition userDefinedTypes<> /* The User Defined Types that were defined */

 /* in this session */

 TemplateBlock currentTemplates <>; /* supported active Templates */

};

Fields descriptions:

header

Same as the corresponding field at the GetTemplatesResponse structure above

requestId

Same as the corresponding field at the GetTemplatesResponse structure above

configId

Same as the corresponding field at the GetTemplatesResponse structure above

currentTemplates

Same as the corresponding field at the GetTemplatesResponse structure above

userDefinedTypes

Array of all the User Defined Types that were defined in the session so far. Each

element of this array is a definition of a User Defined Type that is defined based

on either Elementary Type or User Defined Type that was earlier defined in the

session.

The GET TEMPLATES RESPONSE Message has the messageId set to 0x17 in

the header

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 55 of 75

4.7.5. KEEP ALIVE

In situations where there is low traffic, it is useful to have application controlled

knowledge about the availability of the connection peer.

The KEEP ALIVE MUST be sent by either peer when no traffic has been sent by

that party within the time requested on the CONNECT or CONNECT

RESPONSE Message.

An implementation MAY send KEEP ALIVEs at any time.

Following is the IDL fragment that defines the formal specification of the KEEP

ALIVE Message:

struct KeepAlive {

 struct IPDRStreamingHeader header;

};

Field description:

header

The common header (see the Common Header section)

Note that the Session ID setting is ignored by the Exporter for this Message.

The KEEP ALIVE Message has the messageId set to 0x40 in the header

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 56 of 75

5. Underlying Transport

TCP may be used as a transport layer for IPDR/SP. If TCP is used an implementation
MUST follow these rules:

 Either the Exporter or Collector MAY initiate TCP over a specific TCP port.

 The initiator of a connection is responsible for reestablishing a connection in case
of a failure.

 Messages are written as a stream of bytes into a TCP connection, the size of a
Message is specified by the Message Length Field in the message header.

It is anticipated that in the future, other transports may be used to carry IPDR/SP
Messages. Any such future mechanisms will have their own usage specifications.

As discussed in Section 2.14 “Connection Establishment”, implementations may
choose to only request or receive connections. Collectors SHOULD support both
connection initiation and reception to ensure interoperability. Deployment
considerations may influence the choice of connection models.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 57 of 75

6. Service Discovery

6.1. UDP Protocol

Since the Streaming Protocol may evolve in the future and it MAY run over different
transport layers, a transport neutral version negotiation mechanism running over UDP
is defined. An Exporter or a Collector SHOULD implement version discovery and
negotiation as defined herein. Either party MAY inquire about the Streaming Protocol
version and transport layer support by sending a UDP packet on an agreed UDP port.
If the receiving party implements version discovery and negotiation, it MUST respond
to this request with a UDP packet carrying the protocol version, the transport type and
the port number used for the specific transport.

The inquiring party (either Collector or Exporter) sends the following Message to
query the other party's protocol support. The following IDL fragment defines the
formal specification of this Message

struct VersionRequest {

 int requsterId; /* ID of the version request initiator */

 int requesterBootTime;/* boot time of the version request initiator (in seconds*/

 /* from epoch time) */

 char [4] msg; /* MUST be 'CRAN' for version 1 and 'IPDR' for version 2 */

}

Fields descriptions:
requesterId
ID of the version request initiator

requesterBootTime
Boot time of the version request initiator (in seconds from epoch time).

msg
MUST be 'CRAN' for version 1 and 'IPDR' for version 2

The receiving party SHOULD respond with the following Message that describes the
protocols that it supports.
Following is the IDL fragment that defines the formal specification of this Message.

struct VersionResponse {

 ProtocolInfo defaultProtocol;

 ProtocolInfo [] additionalProtocols;

}

struct ProtocolInfo {

 int transportType;

 int protocolVersion;

 short portNumber;

 short reserved;

}

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 58 of 75

Fields descriptions:

defaultProtocol
The default protocol

additionalProtocols
Additional supported protocols

transportType
TransportTypeId of the transport protocol

protocolVersion
IPDR Streaming Protocol version supported over transport

portNumber
Transport protocol port used

reserved
Reserved/unused

6.2. Capability Files

In addition to the UDP based mechanism described above, IPDR’s existing transport
mechanisms utilize an XML based capability file to define the supported protocols of
an IPDR Transmitter (an Exporter in the case of IPDR/SP). The basic mechanism is
described in the associated IPDR documents [IPDRDocumentMap].

This section defines the extensions to the IPDR Capability file structure to describe an
IPDR/SP capable IPDR Transmitter.

The capability mechanism allows IPDR consumers to determine the formats and
protocols supported by an IPDR Transmitter. IPDR Capability files are intended to be
extended to address other IPDR transfer mechanisms in a uniform, extensible
manner.

The “supportedProtocolItem” XML element is the basic unit for defining a means of
communicating with an IPDR Transmitter (an Exporter). IPDR/SP represents one
means of transmission and as such the information for IPDR/SP is contained in one
of these elements.

The following example shows the structure for XML capability files describing the
IPDR/SP. It mirrors the information content of the UDP based “versioning”, described
previously. The items shown in bold indicate specific details related to IPDR/SP. The
non-bold items are directly taken from the existing Capabilities specification.

<CapabilityRsp>

 <supportedProtocolList>

 <supportedProtocolItem version="2"

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 59 of 75

 protocolMapping="Streaming"

 encoding="XDR">

 <primitiveList>

 <primitiveItem>Push</primitiveItem>

 </primitiveList>

 <extension>

 <exporterAddress>192.168.1.22</exporterAddress>

 <transportType>TCP</transportType>

 <portNumber>666</portNumber>

 </extension>

 </supportedProtocolItem>

 </supportedProtocolList>

 </CapabilityRsp>

The information content in the UDP model “versioning” is:

 a version number – the version shall be 2 for IPDR/SP.

 an Exporter address – a fully qualified domain name or IP address.

 a transport type – for now this is the string “TCP”. SCTP or BEEP or other
protocols may be mapped later.

 a port number – the integer port number where the Exporter may be located.

This is sufficient for a Collector to determine its ability to communicate with an
Exporter. Additional information can be determined using the Messages defined in
IPDR/SP itself.

An Exporter MAY thus advertise a URI which locates this capabilities file and from the
information contained within a Collector can determine its options for communicating
with that system.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 60 of 75

7. Security

The IPDR/SP can be viewed as an application running over a reliable transport layer,
such as TCP or SCTP. The protocol is end-to-end in the sense that the Messages
are communicated between Exporters and Collectors identified by the host address
and the transport protocol port number. Before any Sessions can be initiated, a set of
Collectors' addresses SHOULD be provisioned on the Exporter. Similarly, a Collector
maintains a list of Exporters’ addresses with which it communicates. The
provisioning is typically carried out securely using a network management system; in
this way, the end-points can be authenticated and authorized. As this scheme is
static, without additional security protections the protocol is vulnerable to attacks such
as address spoofing.

IPDR/SP does not offer strong security facilities; therefore, it cannot ensure
confidentiality and integrity or non-repudiation of its Messages. It is strongly
recommended that administrators evaluate their deployment configurations and
implement appropriate security policies. For example, if the IPDR/SP is deployed
over a local area network or a dedicated connection that ensures security, no
additional security services or procedures may be required; however, if Exporters and
Collectors are connected through the Internet, lower layer security services SHOULD
be used.

To achieve strong security, lower layer security services are strongly recommended.
The lower layer security services are transparent to IPDR/SP. Security mechanisms
may be provided at the IP layer using IPSec [IPSEC], or it may be implemented for
transport layer using TLS [TLS]. The provisioning of the lower layer security services
is out of the scope of this document.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 61 of 75

8. Complete IPDR/SP IDL Definition

The following listing shows the normative IDL specification for constructing IPDR/SP
Messages.

/**

 ipdr_streaming.idl - IPDR/SP XDR IDL definition

 This XDR IDL is used to describe all Messages and structures used by IPDR/SP.

 The IDL is organized in the following logical sub-sections:

 - Header structure definition - common to all transport protocol messages.

 - Enumeration of Message IDs.

 - Structure of messages used in transport protocol.

 - Data structures and enumerations used within Messages.

 - Messages and structures used in UDP version discovery and negotiation.

 Note:

 Comments within the text are not normative but rather only used to provide

 minimal documentation. The complete description is available within the

 IPDR/SP specification main body.

 **/

/***

 Header structure definition:

 **/

struct IPDRStreamingHeader {

 char version; /* version of protocol, for this version, set to 2 */

 char messageId; /* the ID of this Message (see MessageIds) */

 char sessionId; /* the ID of this Session or 0 if not Session-specific */

 char messageFlags; /* reserved/unused and set to 0 */

 int messageLen; /* length in bytes of Message including header */

};

/***

 Enumeration of Message IDs:

 **/

enum MessageIds {

 CONNECT = 0x05,

 CONNECT_RESPONSE = 0x06,

 DISCONNECT = 0x07,

 FLOW_START = 0x01,

 FLOW_STOP = 0x03,

 SESSION_START = 0x08,

 SESSION_STOP = 0x09,

 KEEP_ALIVE = 0x40,

 TEMPLATE_DATA = 0x10,

 MODIFY_TEMPLATE = 0x1a,

 MODIFY_TEMPLATE_RESPONSE = 0x1b,

 FINAL_TEMPLATE_DATA_ACK = 0x13,

 START_NEGOTIATION = 0x1d,

 START_NEGOTIATION_REJECT = 0x1e,

 GET_SESSIONS = 0x14,

 GET_SESSIONS_RESPONSE = 0x15,

 GET_TEMPLATES = 0x16,

 GET_TEMPLATES_RESPONSE = 0x17,

 DATA = 0x20,

 DATA_ACK = 0x21,

 REQUEST = 0x30,

 RESPONSE = 0x31,

 ERROR = 0x23

};

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 62 of 75

/***

 Structure of messages used in transport protocol:

 **/

struct Connect {

 struct IPDRStreamingHeader header;

 int initiatorId; /* ID of the NE (Collector/Exporter) within

 the proper network */

 short initiatorPort; /* The transport protocol port number of the initiator */

 int capabilities; /* an array of capability bits for capability negotiation */

 int keepAliveInterval /* the maximum delay between some indication from remote, */

 /* expressed in seconds */

 UTF8String vendorId; /* The vendor ID of the initiator (Exporter/Collector) */

};

struct ConnectResponse {

 struct IPDRStreamingHeader header;

 int capabilities; /* an array of capability bits for capability negotiation */

 int keepAliveInterval; /* the maximum delay between some indication from remote */

 /* It is expressed in seconds. */

 UTF8String vendorId; /* the vendor ID of the responder (Exporter/Collector) */

};

struct Disconnect {

 struct IPDRStreamingHeader header;

};

struct Error {

 struct IPDRStreamingHeader header;

 int timeStamp; /* time of error (in seconds from epoch time) */

 short errorCode; /* The error code field consists of two parts: */

 /* Session oriented flag: it is a one bit flag. */

 /* It is the MSB of the errorCode field. It */

 /* indicates whether the error is specific for */

 /* the session (=1) or it is a general error and*/

 /* thus it is not specific to the session (=0). */

 /* The code ID: The rest 15 LSBs of the */

 /* errorCode field, specifies the error code ID */

 /* (0 - 32767). Values of 0-255 are reserved for*/

 /* standard error codes. */

 /* 0 = keepalive expired */

 /* 1 = Message invalid for capabilities */

 /* 2 = Message invalid for state */

 /* 3 = Message decode error */

 /* 4 = process terminating */

 /* 5 = error in User Defined Type/s */

 /* Values > 255 may be used for vendor specific */

 /* error codes */

 UTF8String description;

};

struct FlowStart {

 struct IPDRStreamingHeader header;

};

struct SessionStart {

 struct IPDRStreamingHeader header;

 int exporterBootTime; /* boot time of Exporter(in seconds from epoch time)*/

 long firstRecordSequenceNumber;/* first sequence number to be expected */

 long droppedRecordCount /* number of records dropped in gap situations */

 boolean primary; /* indication that the Collector is the primary */

 int ackTimeInterval; /* the maximum time between acks from Collector */

 /* (in second units) */

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 63 of 75

 int ackSequenceInterval; /* the maximum number of unacknowledged records */

 char documentId[16]; /* the UUID associated with the info being sent */

 /* in this Session */

};

struct FlowStop {

 struct IPDRStreamingHeader header;

 short reasonCode; /* values of 0-255 are reserved for standard */

 /* reason codes. Values > 255 may be used for */

 /* vendor specific codes. */

 /* 0 = normal process termination */

 /* 1 = termination due to process error */

 UTF8String reasonInfo;

};

struct SessionStop {

 struct IPDRStreamingHeader header;

 short reasonCode; /* values of 0-255 are reserved for standard */

 /* reason codes. Values of > 255 may be used for*/

 /* vendor-specific codes. */

 /* 0 = end of data for session */

 /* 1 = handing off to higher priority Collector */

 /* 2 = Exporter terminating */

 /* 3 = congestion detected */

 /* 4 = renegotiation is required */

 /* 5 = start negotiation acknowledge */

 /* 6 = end of IPDRDoc */

 /* 7 = Template data was updated */

 UTF8String reasonInfo;

};

/* The following three structures are used in case User Defined Types are not supported

*/

struct TemplateData {

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template */

 /* definitions Changes in Template */

 /* MUST use a different configId */

 /* (0 if unused) */

 char flags; /* LSB 0=NN 1=N; rest of bits Unused (reserved)*/

 TemplateBlock templates<>; /* Definitions of Templates supported */

};

struct ModifyTemplate {

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template MUST use a different */

 /* configId (0 if unused) */

 char flags; /* Unused and reserved */

 TemplateBlock changeTemplates<>; /* Definitions of Templates */

};

struct ModifyTemplateResponse {

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template SHOULD use a different */

 /* configId (0 if unused) */

 char flags; /* Unused and reserved */

 TemplateBlock resultTemplates<>; /* Definitions of Templates - final results */

};

/* The following three structures are used in case User Defined Types are supported

*/

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 64 of 75

struct TemplateDataWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template */

 /* definitions Changes in Template */

 /* MUST use a different configId */

 /* (0 if unused) */

 TypeDefinition availableDefinedTypes<> /* The available User Defined Types */

 char flags; /* LSB 0=NN 1=N; rest of bits Unused (reserved)*/

 TemplateBlock templates<>; /* Definitions of Templates supported */

};

struct ModifyTemplateWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template MUST use a different */

 /* configId (0 if unused) */

 TypeDefinition additionalDefinedTypes<> /* Additional User Defined Types for */

 /* the session */

 char flags; /* Unused and reserved */

 TemplateBlock changeTemplates<>; /* Definitions of Templates */

};

struct ModifyTemplateResponseWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short configId; /* Identifies context of Template definitions.*/

 /* Changes in Template SHOULD use a different */

 /* configId (0 if unused) */

 TypeDefinition additionalDefinedTypes<> /* Additional User Defined Types for the */

 /* session */

 char flags; /* Unused and reserved */

 TemplateBlock resultTemplates<>; /* Definitions of Templates - final results */

};

struct FinalTemplateDataAck {

 struct IPDRStreamingHeader header;

};

struct StartNegotiation {

 struct IPDRStreamingHeader header;

};

struct StartNegotiationReject {

 struct IPDRStreamingHeader header;

};

struct Data {

 struct IPDRStreamingHeader header;

 short templateId; /* a Template ID relative to the Session defined */

 /* in the header. The Fields in this Template were */

 /* reported at the beginning of the Session via */

 /* TEMPLATE DATA Messages */

 short configId; /* (see above) */

 char flags; /* currently just duplicate flag */

 long sequenceNum; /* Session relative sequence number of this record */

 opaque dataRecord<>; /* XDR encoded Fields based defined by templateId */

};

struct DataAcknowledge {

 struct IPDRStreamingHeader header;

 short configId; /* (see above) */

 long sequenceNum; /* Session relative sequence number of last record */

 /* received in a series. */

};

struct Request {

 struct IPDRStreamingHeader header;

 short templateId; /* a Template ID relative to the Session defined */

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 65 of 75

 /* in the header. The Fields in this Template were */

 /* reported at the beginning of the Session via */

 /* TEMPLATE DATA Messages */

 short configId; /* (see above) */

 char flags; /* currently just: */

 /* 1) duplicate flag */

 /* 2) is response required (1=true) */

 long requestNumber; /* request number of this record (unique per document) */

 opaque dataRecord<>; /* XDR encoded Fields based defined by templateId */

};

struct Response {

 struct IPDRStreamingHeader header;

 short templateId; /* a Template ID relative to the Session defined */

 /* in the header. The Fields in this Template were */

 /* reported at the beginning of the Session via */

 /* TEMPLATE DATA Messages */

 short configId; /* (see above) */

 char flags; /* currently just success flag (0=fail, 1=success) */

 long requestNumber; /* The request number as defined by the corresponding request*/

 opaque dataRecord<>; /* XDR encoded Fields based defined by templateId */

};

struct GetSessions {

 struct IPDRStreamingHeader header;

 short requestId; /* numeric ID of request for Sessions */

};

struct GetSessionsResponse {

 struct IPDRStreamingHeader header;

 short requestId; /* allows match up of response to request */

 struct SessionBlock sessionBlocks <>;/* description of supported Sessions */

};

struct GetTemplates {

 struct IPDRStreamingHeader header;

 short requestId; /* numeric ID of request for Templates */

};

/* The following structure is used in case User Defined Types are not supported */

struct GetTemplatesResponse {

 struct IPDRStreamingHeader header;

 short requestId; /* allows match up of response to request */

 short configId; /* (see above) */

 TemplateBlock currentTemplates <>; /* supported active Templates */

};

/* The following structure is used in case User Defined Types are supported */

struct GetTemplatesResponseWithUDTs { /* with User Defined Types (UDTs) */

 struct IPDRStreamingHeader header;

 short requestId; /* allows match up of response to request */

 short configId; /* (see above) */

 TypeDefinition userDefinedTypes<> /* The User Defined Types that were defined */

 /* in this session */

 TemplateBlock currentTemplates <>; /* supported active Templates */

};

struct KeepAlive {

 struct IPDRStreamingHeader header;

};

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 66 of 75

/***

 Data structures and enumerations used within Messages:

 **/

struct TypeDefinition {

int typeId; /* 4095 possible values */

 /* Multiplication of 0x10000 in the */

 /* range of: 0x80010000 - 0x8FFF0000 */

 long repetition; /* num of times the componentTypes array is repeated. */

 /* This allows type definition of array. Possible values:*/

 /* = 1: the default that represents a scalar field */

 /* = -1: represents indefinite array length where */

/* each Element of the array is the set of data */

/* types defined in componentTypes */

 /* = n: where n>1: represents array of length n where */

/* each Element of the array is the set of data */

/* types defined in componentTypes */

int componentTypes<> /* The set of types that are components of this type */

}

struct FieldDescriptor{

 int typeId; /* ID of Field Type */

 int fieldId; /* unqualified Field code that can be used */

 /* as alternative accessor handles to Fields */

 UTF8String fieldName; /* Note that Field names are to be qualified */

 /* with the Namespace name, as an example: */

 /* http://www.ipdr.org/namespace:movieId */

 /* The namespace MUST match one of those */

 /* targeted by the schema or schema imports */

 boolean isEnabled /* true=enabled Field false=disabled Field */

};

struct TemplateBlock{

 short templateId; /* ID of Template - context within configId */

 /* Provides numeric Identifier to */

 /* IPDR service specification for context of */

 /* Session/config */

 UTF8String schemaName; /* Reference to IPDR service specification */

 UTF8String typeName; /* Reference to IPDR service specification */

 FieldDescriptor fields<>; /* Fields in this Template */

};

struct SessionBlock {

 char sessionId;

 char sessionType; /* Type of streaming session */

 UTF8String sessionName; /* Optional names and description for the Session */

 UTF8String sessionDescription;

 int ackTimeInterval; /* the maximum time between acks for this Session in sec. */

 int ackSequenceInterval; /* the maximum number of unacknowledged data items */

} ;

enum Capabilities {

 USER_DEFINED_TYPES = 0x01,

 MULTISESSION = 0X02,

 TEMPLATE_NEGOTIATION = 0x04,

 REQUEST_RESPONSE = 0x08,

 FURTHER_CAPABILITIES = 0x80000000

}

/***

 Messages and structures used in UDP version discovery and negotiation:

 **/

struct VersionRequest {

 int requsterId; /* ID of the version request initiator */

 int requesterBootTime;/* boot time of the version request initiator (in seconds*/

 /* from epoch time) */

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 67 of 75

 char [4] msg; /* MUST be 'CRAN' for version 1 and 'IPDR' for version 2 */

}

struct VersionResponse {

 ProtocolInfo defaultProtocol;

 ProtocolInfo [] additionalProtocols;

}

struct ProtocolInfo {

 int transportType; /* TransportTypeId of the transport protocol */

 int protocolVersion;/* IPDR Streaming Protocol version supported over transport*/

 short portNumber; /* Transport protocol port used */

 short reserved; /* Reserved/unused */

}

enum TransportTypeIds {

 TCP = 1,

 SCTP = 2

}

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 68 of 75

9. Appendix A: Terms and Abbreviations Used within this

Document

9.1. Terminology

Term Definition TMF or Outside
Source

Active
Session

An Active Session is part of the Session during which the Exporter sends

Data Records to the Collector. It begins after the Exporter sends a

SESSION START message and ends when the Exporter sends a

SESSION STOP message.

A Session can include one or multiple Active Session(s).

Collection
System

A system composed of several Collectors with the objective of receiving,

reliably, a non-duplicate set of events, perhaps through the use of

redundant Collectors and mechanisms to de-duplicate data.

Collector
Priority

A Collector is assigned a Priority value. Data Records SHOULD be

delivered to the Collector in the flow ready state with the highest priority

value (the primary Collector) within a Session.

Collector A Collector is an implementation on the data receiving side of the

Streaming Protocol. It is typically part of a BSS (e.g., billing, market

analysis, fraud detection, etc.), or a mediation system. There could be

more than one Collector connected to one Exporter to improve

robustness of the usage information export system.

Configuration
ID

An Identifier of a Template Set Configuration.

Data Record A Data Record is a collection of information that is transferred between a

Service Element and a Collection System (in both directions). The

structure of a Data Record is defined by a Template, and contains Fields.

For example a Data Record can be usage information gathered by the

Service Element for various purposes, e.g., accounting.

Data
Sequence
Number

A Data Sequence Number is a sequence number, which is attached to all

data messages to facilitate reliable and in-sequence delivery.

Document

A Document is a logical range of Data Records.

Document ID A Document Identifier.

Element An Element is a formal declaration of a field in an IPDR Information

Model or Service Definition. It is borrowed from the element term in

XML-Schema.

Epoch Time Epoch Time is the time elapsed since 1 January 1970 00:00:00. This is

usually expressed in seconds.

Exporter An Exporter is an implementation on the data producing side of the

Streaming Protocol. It is typically integrated with the Service Element’s

software, enabling it to

collect and send out Data Records to an interested consumer system

using the protocol defined herein.

Field

A Field is a constituent of a Data Record. The formal term is Field

instead of attribute or Element.

Identifier or A means of referring to a specific instance of such items as a Field or a

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 69 of 75

ID Type and distinguish among them. We also have “Field ID” and “Type

ID” as a result.

Information
Model

Information Model is a descriptive tool used to capture the set of

managed information objects at a conceptual level, independent of any

specific implementations or protocols used to transport the information.

Message

A Message is encoded according to rules specified by the Streaming

Protocol and transmitted across the interface between an Exporter and

Collector. It contains a common Streaming Protocol header and

optionally control or user data payload.

Multiplexed
Streams

Continuous flow of Data Records within a session where there are at

least two Data Records that conforms to different Template Data.

Name

A Name is a means to refer to a specific Element and distinguish among

them.

Service
Definition

A Service Definition is an XML Schema representation of an

Information Model which conforms to the IPDR.org Service

Specification Guidelines [IPDR-Service-Spec-Guide].

Service
Element

The logical entity in the IPDR Reference Model which senses usage of

services by the Service Consumer and exports associated usage

information to the IPDR

Recorder. Physically, a Service Element can be any component of

functionality from the IPDR High Level Model Network and Service

Element (NSE) layer. These may include various components

traditionally considered infrastructure network elements.

Session A Session is a logical connection between an Exporter and one or

multiple Collectors for the purpose of delivering Data Records. Multiple

Sessions may be maintained concurrently in an Exporter or Collector;

they are distinguished by Session IDs.

Stream

Continuous flow of Data Records (A series of Data Records that is

placed one after another) from an Exporter toward a Collector within a

certain Session. Each and every Data Records of a given stream

conforms to the same Template Data.

Streaming
Protocol

The Streaming Protocol maybe referred as Streaming, or the Protocol in

this document. The Streaming Protocol is used at the interface(s) between

an Exporter and one or multiple Collectors for the purpose of delivering

Data Records.

Template A Template is specification of the layout of fields within a Data Record.

A Template defines the structure of any types of Data Record, and

specifies the Data Type, meaning, and location of the fields in the record.

Template Set
Configuration

A set of Templates (identified by certain Template IDs) with a certain

order of template fields (identified by certain Field IDs) and associated

negotiated enable/disable status.

Type A Type is a constraint on the value and format of a Field, e.g., date Time.

9.2. Abbreviations and Acronyms

Abbreviation/
Acronym

Abbreviation/ Acronym Spelled
Out

Definition TMF or External
Source

AAA Authentication, Authorization and
Accounting DIAMETER

ASCII American Standard Code for

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 70 of 75

Information Interchange

AVPs Attribute-Value Pairs

BEEP Blocks Extensible Exchange Protocol

BSS Business Support Systems

CDR Call detail Records

CRANE Common Reliable Accounting for
Network Elements

DSN Data Sequence Number

HTTP Hyper Text Transfer Protocol

IDL Interactive Data Language

IPDR Internet Protocol Detail Record

N Negotiable

NE Network Element

NN Non-negotiable

NSE Network and Service Element

OSS Operation Support Systems

RADIUS Remote Authentication Dial-In User

Service

SCTP Stream Control Transmission Protocol

SNMP Simple Network Management Protocol

TCP Transport Control Protocol

UDT User Defined Type

UUID Universal Unique Identifier

VSA Vendor-Specific Attributes

XDR External Data Representation

XML Extensive Markup Language

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 71 of 75

10. References

10.1. References

Reference Description Source Brief Use Summary

BCP14 Key words for use in RFCs to
Indicate Requirement Levels,
BCP14, RFC 2119, March 1997,
Bradner, S.

BEEP The Blocks Extensible Exchange
Protocol Core, RFC 3080, March
2001, M. Rose

DiameterBase DIAMETER Base Protocol, RFC
3588, September 2003, Calhoun,
P., et. al.

IPDRDocumentMap IPDR.org v3.5 Document Map
Overview

IPDR-Service-Spec-
Guide

IPDR Service Specification Guide,
S8000-IPDR-DG, TM Forum

IPDR/XDR Encoding
Format

IPDR/XDR Encoding Format,
S8000-IPDR-XDR, TM Forum

IPSEC Security Architecture for the
Internet Protocol, RFC 2401,
November 1998, Kent, S. and R.
Atkinson.

RADIUS Remote Authentication Dial In
User Service (RADIUS), RFC
2865, June 2000, Rigney, C.,
Willens, S., Rubens, A. and W.
Simpson.

SCTP Stream Control Transmission
Protocol", RFC 2960, October
2000, Stewart, R., Xie, Q.,
Morneault, K., Sharp, C.,
Schwarzbauer, H., Taylor, T.,
Rytina, I., Kalla, M., Zhang, L. and
V. Paxson

TLS The TLS Protocol, Version 1.0,
RFC 2246, January 1999, Dierks,
T. and C. Allen

XDR XDR: External Data
Representation Standard, RFC
1832, August 1995, R. Srinivasan

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 72 of 75

10.2. IPR Releases and Patent
Disclosures

This document may involve a claim of patent rights by one or more of the contributors
to this document, pursuant to the Agreement on Intellectual Rights between the TM
Forum and its members. Interested parties should contact the TM Forum office to
obtain notice of current patent rights claims subject to this document.

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 73 of 75

11. Administrative Appendix

This Appendix provides additional background material about the TM Forum and this
document.

11.1. Document History

11.1.1. Version History

Version
Number

Date
Modified

Modified by: Description of changes

Initial Draft 11/11/03 Working Group Team Initial Draft after harmonization

Review
Draft 1

11/15/03 Working Group Team Consolidation of Several Contributions

Review
Draft 2

11/18/03 Working Group Team Correction of Section Numbering

Review
Draft 3

11/22/03 Working Group Team Addition of Contributions

RD3.1 11/24/03 Working Group Team Addition of Contributions

RD4 11/25/03 Working Group Team Addition of Contributions

RD5 12/11/03 Cotton, Givoly, Meyer Review of RD4, Action Items from
12/10/03 Conference Call

RD6 12/17/03 Weber Resolution of GW Comments

Ballot Draft 1/2/04 Protocol Working
Group

Sent to General Membership for
Comment Prior to Steering Committee
Approval

2.0 5/4/04 Protocol Group Resolve Outstanding Issues Prior to
Issue

2.0.1 11/4/04 Cotton, Kleinmann,
Gotlib

1. Comprehensive cosmetic overhaul
2. Move XDR type encoding table to

XDR specification, replace with
reference in this document.

2.1 12/08/04 Kleinmann, Gotlib 1. Improved Template negotiation
2. Comprehensive cosmetic overhaul

2.2. RD1 05/04/06 Gotlib, Kleinmann 1. bi directional request/response
support, added.

2. State diagram and sequence
3.diagram were updated

AD 6/6/2006 Approval Draft Final Draft for Steering Committee

2.2 8/25/2006 Approved Release

2.3 – Draft 1 1/24/2007 Kleinmann, Gotlib,
Cotton

Addition of support to User Defined Data
Types, revision of the terminology of data
types, and extensibility of negotiation
features.

2.3 – Draft 2 1/25/2007 Kleinmann, Gotlib,
Cotton

Further explanations on the User
Defined Types and fixing a backward
compatibility issue – resulting from the
addition of the User Defined Types

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 74 of 75

around the new TEMPLATE DATA;
MODIFY TEMPLATE and MODIFY
TEMPLATE RESPONSE messages.

2.3 – Draft 3 1/29/2007 Kleinmann Addition of a new session oriented Error
code: - 5 Error in User Type Definitions.
Addition of User Defined Types in the
GET TEMPLATE RESPONSE message.
Remove the useless ability to encode
indefinite arrays
Some clarifications and some editorial
changes.

2.3 – Draft 4 8/14/2007 Kleinmann Omitting reference to “FINISH
NEGOTIATION” since this command
does not exist.
Omitting the redundant notation “that the
Session ID setting is ignored by the
Exporter for this Message” for the GET
TEMPLTE message.
Clarify that “it is not allowed to add new
fields to a template during template
negotiation”
Clarify that the ability to define additional
(UDT) types in the Modify Template and
Modify Template Response messages is
an optional feature – a capability that is
negotiated during the connection
establishment.

2.3 – Draft 5 3/17/2008 Amit Kleinmann Reorganize as a TM Forum Specification

2.3 – Draft 6 9/16/2008 Antonio Plutino Minor updates for AC submission

2.4 4/7/2009 Alicja Kawecki Minor updates to reflect TM Forum
Approval status.

2.5 10/23/2009 Alicja Kawecki Updated Notice on p. 2

2.6 10/01/2011 Protocol Working
Group

Add Session Types as originally defined
by DOCSIS® 3.0, but found to be useful
for all users of the protocol

2.7 11/17/2011 Alicja Kawecki Corrected Notice p. 2, updated copyright
year, minor cosmetic corrections prior to
web posting and ME

2.8 5/11/2012 Alicja Kawecki Updated to reflect TM Forum Approved
status

11.1.2. Release History

Release Number Date Modified Modified by: Description of changes

1.0 Sept 2008 Amit Kleinmann First release as TM
Forum document

1.1 October 2011 Protocol Working
Group

Update to add Session
Types into the IPDR/SP
document

IPDR Streaming Protocol (IPDR/SP) Specification

 TMF8000-IPDR-IIS-PS, V2.8 © TM Forum 2012 Page 75 of 75

11.2. Company Contact Details

Company Team Member
Representative

Advanced Broadband Networks Adam Dunstan
adam@a-bb.net
617 639-0610

11.3. Acknowledgments

This document was prepared by the members of the TM Forum IPDR Working Group:

Adam Dunstan, Advanced Broadband Networks, Editor

Additional contributors to this document:

Kevin Alcox, OpenVault

Brian Hedstrom, CableLabs

Steve Cotton, TM Forum

Contributors to previous versions of this document (developed at IPDR.org):

Amit Kleinmann, Amdocs

Steve Cotton, Cotton Management Consulting

Ty Roach, ACE*COMM

Greg Weber, Cisco Systems

Jeff Meyer, Hewlett Packard

Tal Givoly, Amdocs

Shai Gotlib, Amdocs

mailto:adam@a-bb.net

